Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosting Synthetic Data Generation with Effective Nonlinear Causal Discovery (2301.07427v1)

Published 18 Jan 2023 in cs.AI

Abstract: Synthetic data generation has been widely adopted in software testing, data privacy, imbalanced learning, and artificial intelligence explanation. In all such contexts, it is crucial to generate plausible data samples. A common assumption of approaches widely used for data generation is the independence of the features. However, typically, the variables of a dataset depend on one another, and these dependencies are not considered in data generation leading to the creation of implausible records. The main problem is that dependencies among variables are typically unknown. In this paper, we design a synthetic dataset generator for tabular data that can discover nonlinear causalities among the variables and use them at generation time. State-of-the-art methods for nonlinear causal discovery are typically inefficient. We boost them by restricting the causal discovery among the features appearing in the frequent patterns efficiently retrieved by a pattern mining algorithm. We design a framework for generating synthetic datasets with known causalities to validate our proposal. Broad experimentation on many synthetic and real datasets with known causalities shows the effectiveness of the proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Martina Cinquini (5 papers)
  2. Fosca Giannotti (42 papers)
  3. Riccardo Guidotti (26 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.