Papers
Topics
Authors
Recent
2000 character limit reached

Positive Blow-up Solutions for a Linearly Perturbed Boundary Yamabe Problem

Published 18 Jan 2023 in math.AP | (2301.07396v1)

Abstract: We consider the problem of prescribing the scalar and boundary mean curvatures via conformal deformation of the metric on a $n-$ dimensional compact Riemannian manifold. We deal with the case of negative scalar curvature $K$ and boundary mean curvature $H$ of arbitrary sign which are non-constant and $\mathfrak D_n=\sqrt{n(n-1)}{|K|}{-1/2}>1$ at some point of the boundary. It is known that this problem admits a positive mountain pass solution if $n=3$, while no existence results are known for $n\geq 4$. We will consider a perturbation of the geometric problem and show the existence of a positive solution which blows-up at a boundary point which is critical for both prescribed curvatures.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.