Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Time Lag in Dynamical Systems with Copula Entropy based Transfer Entropy (2301.06037v2)

Published 15 Jan 2023 in cs.LG, cs.SY, eess.SY, and physics.data-an

Abstract: Time lag between variables is a key characteristics of dynamical systems in different fields and identifying such time lag is an important problem in complex systems with many applications. Transfer Entropy (TE) was proposed as a tool for time lag identification recently. Unfortunately, estimating TE has been a notoriously difficult problem. Copula Entropy (CE) is a measure of statistical independence and it was proved that TE can be represented with only CE. Therefore, a non-parametric estimator of TE based on CE was proposed according to such representation recently. In this paper we propose to use the CE-based estimator of TE to identify time lag in dynamical systems. Both simulated and real data are used to verify the effectiveness of the proposed method in the experiments. Experimental results show that the proposed method can identify the time lags in the four simulated systems. The real data experiment with the data on power consumption of the Tetouan city also demonstrates that our method can identify the pattern of time lags through the estimated TE from the weather factors to the power consumption of the city.

Citations (1)

Summary

We haven't generated a summary for this paper yet.