Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal discretization and sparse sampling recovery (2301.05962v2)

Published 14 Jan 2023 in math.NA, cs.IT, cs.NA, math.CA, math.FA, and math.IT

Abstract: Recently, it was discovered that for a given function class $\mathbf{F}$ the error of best linear recovery in the square norm can be bounded above by the Kolmogorov width of $\mathbf{F}$ in the uniform norm. That analysis is based on deep results in discretization of the square norm of functions from finite dimensional subspaces. In this paper we show how very recent results on universal discretization of the square norm of functions from a collection of finite dimensional subspaces lead to an inequality between optimal sparse recovery in the square norm and best sparse approximations in the uniform norm with respect to appropriate dictionaries.

Citations (10)

Summary

We haven't generated a summary for this paper yet.