Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Static, dynamic and stability analysis of multi-dimensional functional graded plate with variable thickness using deep neural network (2301.05900v1)

Published 14 Jan 2023 in cs.LG and cs.CE

Abstract: The goal of this paper is to analyze and predict the central deflection, natural frequency, and critical buckling load of the multi-directional functionally graded (FG) plate with variable thickness resting on an elastic Winkler foundation. First, the mathematical models of the static and eigenproblems are formulated in great detail. The FG material properties are assumed to vary smoothly and continuously throughout three directions of the plate according to a Mori-Tanaka micromechanics model distribution of volume fraction of constituents. Then, finite element analysis (FEA) with mixed interpolation of tensorial components of 4-nodes (MITC4) is implemented in order to eliminate theoretically a shear locking phenomenon existing. Next, influences of the variable thickness functions (uniform, non-uniform linear, and non-uniform non-linear), material properties, length-to-thickness ratio, boundary conditions, and elastic parameters on the plate response are investigated and discussed in detail through several numerical examples. Finally, a deep neural network (DNN) technique using batch normalization (BN) is learned to predict the non-dimensional values of multi-directional FG plates. The DNN model also shows that it is a powerful technique capable of handling an extensive database and different vital parameters in engineering applications.

Summary

We haven't generated a summary for this paper yet.