Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Sphere Formula (2301.05736v1)

Published 13 Jan 2023 in math.CO, cs.DM, and math.GN

Abstract: The sphere formula states that in an arbitrary finite abstract simplicial complex, the sum of the Euler characteristic of unit spheres centered at even-dimensional simplices is equal to the sum of the Euler characteristic of unit spheres centered at odd-dimensional simplices. It follows that if a geometry has constant unit sphere Euler characteristic, like a manifold, then all its unit spheres have zero Euler characteristic or the space itself has zero Euler characteristic. Especially, odd-dimensional manifolds have zero Euler characteristic, a fact usually verified either in algebraic topology using Poincar\'e duality together with Riemann-Hurwitz then deriving it from the existence of a Morse function, using that the Morse indices of the function and its negative add up to zero in odd dimensions. Gauss Bonnet also shows that odd-dimensional Dehn-Sommerville spaces have zero Euler characteristic because they have constant zero curvature. Zero curvature phenomenons can be understood integral geometrically as index expectation or as Dehn-Sommerville relations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.