Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-fidelity error estimation accelerates greedy model reduction of complex dynamical systems (2301.05610v2)

Published 13 Jan 2023 in math.NA and cs.NA

Abstract: Model order reduction usually consists of two stages: the offline stage and the online stage. The offline stage is the expensive part that sometimes takes hours till the final reduced-order model is derived, especially when the original model is very large or complex. Once the reduced-order model is obtained, the online stage of querying the reduced-order model for simulation is very fast and often real-time capable. This work concerns a strategy to significantly speed up the offline stage of model order reduction for large and complex systems. In particular, it is successful in accelerating the greedy algorithm that is often used in the offline stage for reduced-order model construction. We propose multi-fidelity error estimators and replace the high-fidelity error estimator in the greedy algorithm. Consequently, the computational complexity at each iteration of the greedy algorithm is reduced and the algorithm converges more than 3 times faster without incurring noticeable accuracy loss.

Citations (3)

Summary

We haven't generated a summary for this paper yet.