Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomization Tests for Adaptively Collected Data (2301.05365v2)

Published 13 Jan 2023 in stat.ME

Abstract: Randomization testing is a fundamental method in statistics, enabling inferential tasks such as testing for (conditional) independence of random variables, constructing confidence intervals in semiparametric location models, and constructing (by inverting a permutation test) model-free prediction intervals via conformal inference. Randomization tests are exactly valid for any sample size, but their use is generally confined to exchangeable data. Yet in many applications, data is routinely collected adaptively via, e.g., (contextual) bandit and reinforcement learning algorithms or adaptive experimental designs. In this paper we present a general framework for randomization testing on adaptively collected data (despite its non-exchangeability) that uses a novel weighted randomization test, for which we also present novel computationally tractable resampling algorithms for various popular adaptive assignment algorithms, data-generating environments, and types of inferential tasks. Finally, we demonstrate via a range of simulations the efficacy of our framework for both testing and confidence/prediction interval construction.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com