Exact emergent higher-form symmetries in bosonic lattice models (2301.05261v5)
Abstract: Although condensed matter systems usually do not have higher-form symmetries, we show that, unlike 0-form symmetry, higher-form symmetries can emerge as exact symmetries at low energies and long distances. In particular, emergent higher-form symmetries at zero temperature are robust to arbitrary local UV perturbations in the thermodynamic limit. This result is true for both invertible and non-invertible higher-form symmetries. Therefore, emergent higher-form symmetries are $\textit{exact emergent symmetries}$: they are not UV symmetries but constrain low-energy dynamics as if they were. Since phases of matter are defined in the thermodynamic limit, this implies that a UV theory without higher-form symmetries can have phases characterized by exact emergent higher-form symmetries. We demonstrate this in three lattice models, the quantum clock model and emergent ${\mathbb{Z}_N}$ and ${U(1)}$ ${p}$-gauge theory, finding regions of parameter space with exact emergent (anomalous) higher-form symmetries. Furthermore, we perform a generalized Landau analysis of a 2+1D lattice model that gives rise to $\mathbb{Z}_2$ gauge theory. Using exact emergent 1-form symmetries accompanied by their own energy/length scales, we show that the transition between the deconfined and Higgs/confined phases is continuous and equivalent to the spontaneous symmetry-breaking transition of a $\mathbb{Z}_2$ symmetry, even though the lattice model has no symmetry. Also, we show that this transition line must $\textit{always}$ contain two parts separated by multi-critical points or other phase transitions. We discuss the physical consequences of exact emergent higher-form symmetries and contrast them to emergent ${0}$-form symmetries. Lastly, we show that emergent 1-form symmetries are no longer exact at finite temperatures, but emergent $p$-form symmetries with ${p\geq 2}$ are.
- Z. Nussinov and G. Ortiz, Sufficient symmetry conditions for topological quantum order, Proc. Natl. Acad. Sci. U.S.A. 106, 16944 (2009a), arXiv:cond-mat/0605316 .
- Z. Nussinov and G. Ortiz, A symmetry principle for topological quantum order, Ann. Phys. 324, 977 (2009b), arXiv:cond-mat/0702377 .
- E. Sharpe, Notes on generalized global symmetries in QFT, Fortschr. Phys. 63, 659 (2015), arXiv:1508.04770 .
- F. Benini, C. Córdova, and P.-S. Hsin, On 2-group global symmetries and their anomalies, J. High Energ. Phys. 2019 (3), 118, arXiv:1803.09336 .
- C. Córdova, T. T. Dumitrescu, and K. Intriligator, Exploring 2-group global symmetries, J. High Energ. Phys. 2019 (2), 184, arXiv:1802.04790 .
- A. Kapustin and L. Spodyneiko, Hohenberg-Mermin-Wagner-type theorems and dipole symmetry, Phys. Rev. B 106, 245125 (2022), arXiv:2208.09056 .
- M. Qi, L. Radzihovsky, and M. Hermele, Fracton phases via exotic higher-form symmetry-breaking, Ann. Phys. 424, 168360 (2021), arXiv:2010.02254 .
- L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, J. High Energ. Phys. 2018 (3), 189, arXiv:1704.02330 .
- R. Thorngren and Y. Wang, Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases (2019), arXiv:1912.02817 .
- H. Moradi, S. Faroogh Moosavian, and A. Tiwari, Topological holography: Towards a unification of Landau and beyond-Landau physics, SciPost Phys. Core 6, 066 (2023), arXiv:2207.10712 .
- D. S. Freed, G. W. Moore, and C. Teleman, Topological symmetry in quantum field theory (2022), arXiv:2209.07471 .
- J. McGreevy, Generalized Symmetries in Condensed Matter, Annu. Rev. Condens. Matter Phys. 14, 57 (2023), arXiv:2204.03045 .
- X.-G. Wen, Topological orders in rigid states, Int. J. Mod. Phys. B 04, 239 (1990).
- L. D. Landau, Theory of phase transformations I, Phys. Z. Sowjetunion 11, 26 (1937).
- V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
- X.-G. Wen, Emergent (anomalous) higher symmetries from topological order and from dynamical electromagnetic field in condensed matter systems, Phys. Rev. B 99, 205139 (2019), arXiv:1812.02517 .
- P.-S. Hsin, H. T. Lam, and N. Seiberg, Comments on one-form global symmetries and their gauging in 3d and 4d, SciPost Phys. 6, 039 (2019), arXiv:1812.04716 .
- P.-S. Hsin and A. Turzillo, Symmetry-enriched quantum spin liquids in (3+1)d31𝑑{(3+1)d}( 3 + 1 ) italic_d, J. High Energ. Phys. 2020 (9), 22, arXiv:1904.11550 .
- S. D. Pace, Emergent generalized symmetries in ordered phases (2023), arXiv:2308.05730 .
- A. Kovner and B. Rosenstein, New look at QED4subscriptQED4{\mathrm{QED}}_{4}roman_QED start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT: the photon as a Goldstone boson and the topological interpretation of electric charge, Phys. Rev. D 49, 5571 (1994), arXiv:hep-th/9210154 .
- E. Lake, Higher-form symmetries and spontaneous symmetry breaking (2018), arXiv:1802.07747 .
- D. Hofman and N. Iqbal, Goldstone modes and photonization for higher form symmetries, SciPost Phys. 6, 006 (2019), arXiv:1802.09512 .
- K.-S. Kim and Y. Hirono, Higher-form symmetries and d𝑑ditalic_d-wave superconductors from doped Mott insulators, Phys. Rev. B 100, 085142 (2019), arXiv:1905.04617 .
- Y. Hidaka, Y. Hirono, and R. Yokokura, Counting Nambu-Goldstone Modes of Higher-Form Global Symmetries, Phys. Rev. Lett. 126, 071601 (2021), arXiv:2007.15901 .
- N. Yamamoto and R. Yokokura, Topological mass generation in gapless systems, Phys. Rev. D 104, 025010 (2021), arXiv:2009.07621 .
- N. Iqbal and J. McGreevy, Mean string field theory: Landau-Ginzburg theory for 1-form symmetries, SciPost Phys. 13, 114 (2022), arXiv:2106.12610 .
- R. Thorngren and C. von Keyserlingk, Higher SPT’s and a generalization of anomaly in-flow (2015), arXiv:1511.02929 .
- B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93, 155131 (2016), arXiv:1508.03468 .
- L. Tsui and X.-G. Wen, Lattice models that realize ℤnsubscriptℤ𝑛{\mathbb{Z}}_{n}blackboard_Z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-1 symmetry-protected topological states for even n𝑛nitalic_n, Phys. Rev. B 101, 035101 (2020), arXiv:1908.02613 .
- S. D. Pace and X.-G. Wen, Emergent higher-symmetry protected topological orders in the confined phase of U(1)𝑈1U(1)italic_U ( 1 ) gauge theory, Phys. Rev. B 107, 075112 (2023), arXiv:2207.03544 .
- D. Foerster, H. Nielsen, and M. Ninomiya, Dynamical stability of local gauge symmetry creation of light from chaos, Phys. Lett. B 94, 135 (1980).
- M. B. Hastings and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Phys. Rev. B 72, 045141 (2005), arXiv:cond-mat/0503554 .
- E. Poppitz and Y. Shang, “Light from chaos” in two dimensions, International Journal of Modern Physics A 23, 4545 (2008), arXiv:0801.0587 .
- A. M. Somoza, P. Serna, and A. Nahum, Self-Dual Criticality in Three-Dimensional ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Gauge Theory with Matter, Phys. Rev. X 11, 041008 (2021), arXiv:2012.15845 .
- C. Córdova, K. Ohmori, and T. Rudelius, Generalized symmetry breaking scales and weak gravity conjectures, J. High Energ. Phys. 2022 (11), 154, arXiv:2202.05866 .
- Z.-P. Cian, M. Hafezi, and M. Barkeshli, Extracting Wilson loop operators and fractional statistics from a single bulk ground state (2022), arXiv:2209.14302 .
- Y. Hidaka and D. Kondo, Emergent higher-form symmetry in Higgs phases with superfluidity (2022), arXiv:2210.11492 .
- A. Cherman and T. Jacobson, Emergent 1-form symmetries (2023), arXiv:2304.13751 .
- A. Chatterjee and X.-G. Wen, Symmetry as a shadow of topological order and a derivation of topological holographic principle, Phys. Rev. B 107, 155136 (2023), arXiv:2203.03596 .
- R. B. Laughlin and D. Pines, The Theory of Everything, Proc. Natl. Acad. Sci. U.S.A. 97, 28 (2000).
- S. D. Pace and X.-G. Wen, Position-dependent excitations and UV/IR mixing in the ℤNsubscriptℤ𝑁{\mathbb{Z}}_{N}blackboard_Z start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT rank-2 toric code and its low-energy effective field theory, Phys. Rev. B 106, 045145 (2022), arXiv:2204.07111 .
- S. Bravyi, M. B. Hastings, and S. Michalakis, Topological quantum order: stability under local perturbations, J. Math. Phys. 51, 093512 (2010), arXiv:1001.0344 .
- C. Yin and A. Lucas, Prethermalization and the Local Robustness of Gapped Systems, Phys. Rev. Lett. 131, 050402 (2023), arXiv:2209.11242 .
- S. Moudgalya and O. I. Motrunich, From symmetries to commutant algebras in standard Hamiltonians, Ann. Phys. , 169384 (2023a), arXiv:2209.03370 .
- S. Moudgalya and O. I. Motrunich, Numerical methods for detecting symmetries and commutant algebras, Phys. Rev. B 107, 224312 (2023b), arXiv:2302.03028 .
- K. Roumpedakis, S. Seifnashri, and S.-H. Shao, Higher Gauging and Non-invertible Condensation Defects, Commun. Math. Phys. 401, 3043 (2023), arXiv:2204.02407 .
- L. Bhardwaj, S. Schäfer-Nameki, and J. Wu, Universal Non-Invertible Symmetries, Fortschr. Phys. 70, 2200143 (2022), arXiv:2208.05973 .
- C. Delcamp and A. Tiwari, Higher categorical symmetries and gauging in two-dimensional spin systems (2023), arXiv:2301.01259 .
- L. Bhardwaj and S. Schäfer-Nameki, Generalized Charges, Part I: Invertible Symmetries and Higher Representations (2023a), arXiv:2304.02660 .
- T. Bartsch, M. Bullimore, and A. Grigoletto, Higher representations for extended operators (2023), arXiv:2304.03789 .
- L. Bhardwaj and S. Schäfer-Nameki, Generalized Charges, Part II: Non-Invertible Symmetries and the Symmetry TFT (2023b), arXiv:2305.17159 .
- S.-S. Lee and P. A. Lee, Emergent U(1) gauge theory with fractionalized boson/fermion from the Bose condensation of excitons in a multiband insulator, Phys. Rev. B 72, 235104 (2005), arXiv:cond-mat/0507191 .
- F. Wu, Y. Deng, and N. Prokof’ev, Phase diagram of the toric code model in a parallel magnetic field, Phys. Rev. B 85, 195104 (2012), arXiv:1201.6409 .
- I. Hubač and S. Wilson, Brillouin-Wigner Perturbation Theory, in Brillouin-Wigner Methods for Many-Body Systems (Springer, 2010) pp. 37–68.
- S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer-Wolff transformation for quantum many-body systems, Ann. Phys. 326, 2793 (2011), arXiv:1105.0675 .
- L. Kong and H. Zheng, Categories of quantum liquids III, (2022), arXiv:2201.05726 .
- W. Ji and X.-G. Wen, Categorical symmetry and noninvertible anomaly in symmetry-breaking and topological phase transitions, Phys. Rev. Res. 2, 033417 (2020), arXiv:1912.13492 .
- W. Ji and X.-G. Wen, Non-invertible anomalies and mapping-class-group transformation of anomalous partition functions, Phys. Rev. Research 1, 033054 (2019), arXiv:1905.13279 .
- X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88, 045013 (2013), arXiv:1303.1803 .
- A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313, 351 (2012), arXiv:1104.5047 .
- X.-G. Wen, Gapless boundary excitations in the quantum hall states and in the chiral spin states, Phys. Rev. B 43, 11025 (1991a).
- L. Delacrétaz, D. Hofman, and G. Mathys, Superfluids as higher-form anomalies, SciPost Phys. 8, 047 (2020), arXiv:1908.06977 .
- A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, J. High Energ. Phys. 2014 (4), 1, arXiv:1401.0740 .
- N. Iqbal and J. McGreevy, Toward a 3d Ising model with a weakly-coupled string theory dual, SciPost Phys. 9, 019 (2020), arXiv:2003.04349 .
- A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003), arXiv:quant-ph/9707021 .
- E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with higgs fields, Phys. Rev. D 19, 3682 (1979).
- J. Vidal, S. Dusuel, and K. P. Schmidt, Low-energy effective theory of the toric code model in a parallel magnetic field, Phys. Rev. B 79, 033109 (2009), arXiv:0807.0487 .
- M. Iqbal and N. Schuch, Entanglement Order Parameters and Critical Behavior for Topological Phase Transitions and Beyond, Phys. Rev. X 11, 041014 (2021), arXiv:2011.06611 .
- C. Bonati, A. Pelissetto, and E. Vicari, Multicritical point of the three-dimensional ℤ2subscriptℤ2{\mathbb{Z}}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge Higgs model, Phys. Rev. B 105, 165138 (2022), arXiv:2112.01824 .
- N. Read and S. Sachdev, Large-N𝑁Nitalic_N expansion for frustrated quantum antiferromagnets, Phys. Rev. Lett. 66, 1773 (1991).
- X.-G. Wen, Mean-field theory of spin-liquid states with finite energy gap and topological orders, Phys. Rev. B 44, 2664 (1991b).
- C. Córdova and K. Ohmori, Anomaly Obstructions to Symmetry Preserving Gapped Phases (2020), arXiv:1910.04962 .
- T. Banks and E. Rabinovici, Finite-temperature behavior of the lattice abelian Higgs model, Nucl. Phys. B. 160, 349 (1979).
- S. Weinberg, Approximate Symmetries and Pseudo-Goldstone Bosons, Phys. Rev. Lett. 29, 1698 (1972).
- S. D. Pace and Y. L. Liu, Topological aspects of brane fields: solitons and higher-form symmetries (2023), arXiv:2311.09293 .
- D. V. Else and T. Senthil, Critical drag as a mechanism for resistivity, Phys. Rev. B 104, 205132 (2021), arXiv:2106.15623 .
- C. G. Callan Jr. and J. A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys. B 250, 427 (1985).
- A. Kapustin, Bosonic Topological Insulators and Paramagnets: A view from cobordisms, (2014), arXiv:1404.6659 .
- X.-G. Wen, A theory of 2+1D bosonic topological orders, Nat. Sci. Rev. 3, 68 (2015), arXiv:1506.05768 .
- M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17, 675 (2021), arXiv:2011.09486 .
- C. Castelnovo and C. Chamon, Topological order in a three-dimensional toric code at finite temperature, Phys. Rev. B 78, 155120 (2008), arXiv:0804.3591 .
- R. Alicki, M. Fannes, and M. Horodecki, On thermalization in Kitaev’s 2D model, Journal of Physics A: Mathematical and Theoretical 42, 065303 (2009), arXiv:0810.4584 .
- L. Savary and L. Balents, Quantum spin liquids: a review, Reports on Progress in Physics 80, 016502 (2016), arXiv:1601.03742 .
- M. J. Gingras and P. A. McClarty, Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets, Reports on Progress in Physics 77, 056501 (2014), arXiv:1311.1817 .
- M. Hermele, M. P. A. Fisher, and L. Balents, Pyrochlore photons: The U(1) spin liquid in a S=1/2 three-dimensional frustrated magnet, Phys. Rev. B 69, 064404 (2004), arXiv:cond-mat/0305401 .
- O. Benton, O. Sikora, and N. Shannon, Seeing the light: Experimental signatures of emergent electromagnetism in a quantum spin ice, Phys. Rev. B 86, 075154 (2012), arXiv:1204.1325 .
- T. Sulejmanpasic and C. Gattringer, Abelian gauge theories on the lattice: θ𝜃\thetaitalic_θ-Terms and compact gauge theory with(out) monopoles, Nucl. Phys. B 943, 114616 (2019), arXiv:1901.02637 .
- Z. Wan, J. Wang, and X.-G. Wen, (3+1)d31d(3+1)\mathrm{d}( 3 + 1 ) roman_d boundaries with gravitational anomaly of (4+1)d41d(4+1)\mathrm{d}( 4 + 1 ) roman_d invertible topological order for branch-independent bosonic systems, Phys. Rev. B 106, 045127 (2022), arXiv:2112.12148 .
- K. Slagle and Y. B. Kim, Quantum field theory of X-cube fracton topological order and robust degeneracy from geometry, Phys. Rev. B 96, 195139 (2017), arXiv:1708.04619 .
- J. Maldacena, N. Seiberg, and G. Moore, D-brane charges in five-brane backgrounds, J. High Energy Phys. 2001 (10), 005, arXiv:hep-th/0108152 .
- T. Hansson, V. Oganesyan, and S. Sondhi, Superconductors are topologically ordered, Ann. Phys. 313, 497 (2004), arXiv:cond-mat/0404327 .
- T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83, 084019 (2011), arXiv:1011.5120 .
- P. Mathieu and F. Thuillier, Abelian BF theory and Turaev-Viro invariant, J. Math. Phys. 57, 022306 (2016), arXiv:1509.04236 .
- E. Witten, On S𝑆Sitalic_S-duality in Abelian Gauge Theory, Selecta Mathematica 1, 383 (1995), arXiv:hep-th/9505186 .
- C.-T. Hsieh, Y. Tachikawa, and K. Yonekura, Anomaly inflow and p𝑝pitalic_p-form gauge theories, Commun. Math. Phys. 391, 495 (2022), arXiv:2003.11550 .