Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Does progress on ImageNet transfer to real-world datasets? (2301.04644v1)

Published 11 Jan 2023 in cs.CV

Abstract: Does progress on ImageNet transfer to real-world datasets? We investigate this question by evaluating ImageNet pre-trained models with varying accuracy (57% - 83%) on six practical image classification datasets. In particular, we study datasets collected with the goal of solving real-world tasks (e.g., classifying images from camera traps or satellites), as opposed to web-scraped benchmarks collected for comparing models. On multiple datasets, models with higher ImageNet accuracy do not consistently yield performance improvements. For certain tasks, interventions such as data augmentation improve performance even when architectures do not. We hope that future benchmarks will include more diverse datasets to encourage a more comprehensive approach to improving learning algorithms.

Citations (26)

Summary

We haven't generated a summary for this paper yet.