Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collision-free Source Seeking and Flocking Control of Multi-agents with Connectivity Preservation (2301.04576v2)

Published 11 Jan 2023 in eess.SY, cs.RO, and cs.SY

Abstract: We present a distributed source-seeking and flocking control method for networked multi-agent systems with non-holonomic constraints. Based solely on identical on-board sensor systems, which measure the source local field, the group objective is attained by appointing a leader agent to seek the source while the remaining follower agents form a cohesive flocking with their neighbors using a distributed flocking control law in a connectivity-preserved undirected network. To guarantee the safe separation and group motion for all agents and to solve the conflicts with the "cohesion" flocking rule of Reynolds, the distributed control algorithm is solved individually through quadratic-programming optimization problem with constraints, which guarantees the inter-agent collision avoidance and connectivity preservation. Stability analysis of the closed-loop system is presented and the efficacy of the methods is shown in simulation results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Y. Jia and L. Wang, “Leader–follower flocking of multiple robotic fish,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 3, pp. 1372–1383, 2014.
  2. M. Deghat, B. D. Anderson, and Z. Lin, “Combined flocking and distance-based shape control of multi-agent formations,” IEEE Transactions on Automatic Control, vol. 61, no. 7, pp. 1824–1837, 2015.
  3. C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 1987, pp. 25–34.
  4. M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, and S. Boccaletti, “Synchronization of moving chaotic agents,” Physical review letters, vol. 100, no. 4, p. 044102, 2008.
  5. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Physical review letters, vol. 75, no. 6, p. 1226, 1995.
  6. J. T. Emlen, “Flocking behavior in birds,” The Auk, vol. 69, no. 2, pp. 160–170, 1952.
  7. A. Okubo, “Dynamical aspects of animal grouping: swarms, schools, flocks, and herds,” Advances in biophysics, vol. 22, pp. 1–94, 1986.
  8. K. Saulnier, D. Saldana, A. Prorok, G. J. Pappas, and V. Kumar, “Resilient flocking for mobile robot teams,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1039–1046, 2017.
  9. W. Yu, G. Chen, and M. Cao, “Distributed leader–follower flocking control for multi-agent dynamical systems with time-varying velocities,” Systems & Control Letters, vol. 59, no. 9, pp. 543–552, 2010.
  10. R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420, 2006.
  11. M. Ji and M. Egerstedt, “Distributed coordination control of multiagent systems while preserving connectedness,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 693–703, 2007.
  12. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.
  13. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.
  14. M. Ji, A. Muhammad, and M. Egerstedt, “Leader-based multi-agent coordination: Controllability and optimal control,” in 2006 American Control Conference.   IEEE, 2006, pp. 6–pp.
  15. D. Gu and Z. Wang, “Leader–follower flocking: algorithms and experiments,” IEEE Transactions on Control Systems Technology, vol. 17, no. 5, pp. 1211–1219, 2009.
  16. D. Gu and H. Hu, “Using fuzzy logic to design separation function in flocking algorithms,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 4, pp. 826–838, 2008.
  17. H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Stable flocking of mobile agents, part i: Fixed topology,” in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), vol. 2.   IEEE, 2003, pp. 2010–2015.
  18. T. Ibuki, S. Wilson, J. Yamauchi, M. Fujita, and M. Egerstedt, “Optimization-based distributed flocking control for multiple rigid bodies,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1891–1898, 2020.
  19. K. Morihiro, T. Isokawa, H. Nishimura, and N. Matsui, “Emergence of flocking behavior based on reinforcement learning,” in Knowledge-Based Intelligent Information and Engineering Systems: 10th International Conference, KES 2006, Bournemouth, UK, October 9-11, 2006. Proceedings, Part III 10.   Springer, 2006, pp. 699–706.
  20. S.-M. Hung and S. N. Givigi, “A q-learning approach to flocking with uavs in a stochastic environment,” IEEE Transactions on Cybernetics, vol. 47, no. 1, pp. 186–197, 2016.
  21. M. M. Zavlanos and G. J. Pappas, “Potential fields for maintaining connectivity of mobile networks,” IEEE Transactions on Robotics, vol. 23, no. 4, pp. 812–816, 2007.
  22. Y. Kim and M. Mesbahi, “On maximizing the second smallest eigenvalue of a state-dependent graph laplacian,” in Proceedings of the 2005, American Control Conference, 2005.   IEEE, 2005, pp. 99–103.
  23. M. C. De Gennaro and A. Jadbabaie, “Decentralized control of connectivity for multi-agent systems,” in Proceedings of the 45th IEEE Conference on Decision and Control.   IEEE, 2006, pp. 3628–3633.
  24. L. Sabattini, C. Secchi, N. Chopra, and A. Gasparri, “Distributed control of multirobot systems with global connectivity maintenance,” IEEE Transactions on Robotics, vol. 29, no. 5, pp. 1326–1332, 2013.
  25. H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching networks,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 863–868, 2007.
  26. S. Izumi, “Performance analysis of chemotaxis-inspired stochastic controllers for multi-agent coverage,” New Generation Computing, vol. 40, no. 3, pp. 871–887, 2022.
  27. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.
  28. T. Li, B. Jayawardhana, A. M. Kamat, and A. G. P. Kottapalli, “Source-seeking control of unicycle robots with 3-d-printed flexible piezoresistive sensors,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 448–462, 2021.
  29. Y. Yamamoto and X. Yun, “Coordinating locomotion and manipulation of a mobile manipulator,” in [1992] Proceedings of the 31st IEEE Conference on Decision and Control.   IEEE, 1992, pp. 2643–2648.
  30. J. R. Lawton, R. W. Beard, and B. J. Young, “A decentralized approach to formation maneuvers,” IEEE Transactions on Robotics and Automation, vol. 19, no. 6, pp. 933–941, 2003.
  31. B. d’Andrea Novel, G. Bastin, and G. Campion, “Dynamic feedback linearization of nonholonomic wheeled mobile robots,” in Proceedings 1992 IEEE International Conference on Robotics and Automation.   IEEE Computer Society, 1992, pp. 2527–2528.
  32. T. Li and B. Jayawardhana, “Collision-free source seeking control methods for unicycle robots,” arXiv preprint arXiv:2212.07203, 2022.
  33. L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free multirobot systems,” IEEE Transactions on Robotics, vol. 33, no. 3, pp. 661–674, 2017.
Citations (2)

Summary

We haven't generated a summary for this paper yet.