Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diving Deep into Modes of Fact Hallucinations in Dialogue Systems (2301.04449v1)

Published 11 Jan 2023 in cs.CL and cs.AI

Abstract: Knowledge Graph(KG) grounded conversations often use large pre-trained models and usually suffer from fact hallucination. Frequently entities with no references in knowledge sources and conversation history are introduced into responses, thus hindering the flow of the conversation -- existing work attempt to overcome this issue by tweaking the training procedure or using a multi-step refining method. However, minimal effort is put into constructing an entity-level hallucination detection system, which would provide fine-grained signals that control fallacious content while generating responses. As a first step to address this issue, we dive deep to identify various modes of hallucination in KG-grounded chatbots through human feedback analysis. Secondly, we propose a series of perturbation strategies to create a synthetic dataset named FADE (FActual Dialogue Hallucination DEtection Dataset). Finally, we conduct comprehensive data analyses and create multiple baseline models for hallucination detection to compare against human-verified data and already established benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Souvik Das (28 papers)
  2. Sougata Saha (13 papers)
  3. Rohini K. Srihari (9 papers)
Citations (28)