Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Loss-Controlling Calibration for Predictive Models (2301.04378v3)

Published 11 Jan 2023 in cs.LG

Abstract: We propose a learning framework for calibrating predictive models to make loss-controlling prediction for exchangeable data, which extends our recently proposed conformal loss-controlling prediction for more general cases. By comparison, the predictors built by the proposed loss-controlling approach are not limited to set predictors, and the loss function can be any measurable function without the monotone assumption. To control the loss values in an efficient way, we introduce transformations preserving exchangeability to prove finite-sample controlling guarantee when the test label is obtained, and then develop an approximation approach to construct predictors. The transformations can be built on any predefined function, which include using optimization algorithms for parameter searching. This approach is a natural extension of conformal loss-controlling prediction, since it can be reduced to the latter when the set predictors have the nesting property and the loss functions are monotone. Our proposed method is applied to selective regression and high-impact weather forecasting problems, which demonstrates its effectiveness for general loss-controlling prediction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. A. N. Angelopoulos and S. Bates, “A gentle introduction to conformal prediction and distribution-free uncertainty quantification,” arXiv preprint arXiv:2107.07511, 2021.
  2. M. Fontana, G. Zeni, and S. Vantini, “Conformal prediction: a unified review of theory and new challenges,” Bernoulli, vol. 29, no. 1, pp. 1–23, 2023.
  3. D. Wang, P. Wang, Z. Ji, X. Yang, and H. Li, “Conformal loss-controlling prediction,” arXiv preprint arXiv:2301.02424, 2023.
  4. S. Bates, A. Angelopoulos, L. Lei, J. Malik, and M. Jordan, “Distribution-free, risk-controlling prediction sets,” Journal of the ACM (JACM), vol. 68, no. 6, pp. 1–34, 2021.
  5. A. N. Angelopoulos, S. Bates, A. Fisch, L. Lei, and T. Schuster, “Conformal risk control,” arXiv preprint arXiv:2208.02814, 2022.
  6. A. N. Angelopoulos, S. Bates, E. J. Candès, M. I. Jordan, and L. Lei, “Learn then test: Calibrating predictive algorithms to achieve risk control,” arXiv preprint arXiv:2110.01052, 2021.
  7. H. Papadopoulos, “Inductive conformal prediction: Theory and application to neural networks,” in Tools in artificial intelligence.   IntechOpen, 2008.
  8. A. Dean and J. Verducci, “Linear transformations that preserve majorization, schur concavity, and exchangeability,” Linear algebra and its applications, vol. 127, pp. 121–138, 1990.
  9. A. K. Kuchibhotla, “Exchangeability, conformal prediction, and rank tests,” arXiv preprint arXiv:2005.06095, 2020.
  10. R. J. Tibshirani, R. Foygel Barber, E. Candes, and A. Ramdas, “Conformal prediction under covariate shift,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  11. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  12. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32.   Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
  13. L. Feng, M. O. Ahmed, H. Hajimirsadeghi, and A. Abdi, “Towards better selective classification,” arXiv preprint arXiv:2206.09034, 2022.
  14. C. E. Rasmussen, R. M. Neal, G. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra, and R. Tibshirani, “Delve data for evaluating learning in valid experiments,” URL http://www. cs. toronto. edu/  delve, 1996.
  15. J. Alcalá, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, and F. Herrera, “Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework,” Journal of Multiple-Valued Logic and Soft Computing, vol. 17, no. 2-3, pp. 255–287, 2010.
  16. A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
  17. L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
  18. P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Machine learning, vol. 63, pp. 3–42, 2006.
  19. G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, “Mulan: A java library for multi-label learning,” The Journal of Machine Learning Research, vol. 12, pp. 2411–2414, 2011.
  20. S. Vannitsem, J. B. Bremnes, J. Demaeyer, G. R. Evans, J. Flowerdew, S. Hemri, S. Lerch, N. Roberts, S. Theis, A. Atencia et al., “Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world,” Bulletin of the American Meteorological Society, vol. 102, no. 3, pp. E681–E699, 2021.
  21. P. Grönquist, C. Yao, T. Ben-Nun, N. Dryden, P. Dueben, S. Li, and T. Hoefler, “Deep learning for post-processing ensemble weather forecasts,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2194, p. 20200092, 2021.
  22. T. Palmer, “The ecmwf ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years,” Quarterly Journal of the Royal Meteorological Society, vol. 145, pp. 12–24, 2019.
  23. National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce, Japan Meteorological Agency, Japan, Met Office, Ministry of Defence, United Kingdom, China Meteorological Administration, China, Meteorological Service of Canada, Environment Canada, Korea Meteorological Administration, Republic of Korea, Meteo-France, France, European Centre for Medium-Range Weather Forecasts, and Bureau of Meteorology, Australia, “Thorpex interactive grand global ensemble (tigge) model tropical cyclone track data,” Boulder CO, 2008. [Online]. Available: https://doi.org/10.5065/D6GH9GSZ
  24. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers et al., “The era5 global reanalysis,” Quarterly Journal of the Royal Meteorological Society, vol. 146, no. 730, pp. 1999–2049, 2020.
  25. Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural networks: analysis, applications, and prospects,” IEEE Transactions on Neural Networks and Learning Systems, 2021.
  26. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2015, pp. 234–241.
  27. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

Summary

We haven't generated a summary for this paper yet.