Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noncontact Respiratory Anomaly Detection Using Infrared Light-Wave Sensing (2301.03713v4)

Published 9 Jan 2023 in eess.SP and cs.LG

Abstract: Human respiratory rate and its pattern convey essential information about the physical and psychological states of the subject. Abnormal breathing can indicate fatal health issues leading to further diagnosis and treatment. Wireless light-wave sensing (LWS) using incoherent infrared light shows promise in safe, discreet, efficient, and non-invasive human breathing monitoring without raising privacy concerns. The respiration monitoring system needs to be trained on different types of breathing patterns to identify breathing anomalies.The system must also validate the collected data as a breathing waveform, discarding any faulty data caused by external interruption, user movement, or system malfunction. To address these needs, this study simulated normal and different types of abnormal respiration using a robot that mimics human breathing patterns. Then, time-series respiration data were collected using infrared light-wave sensing technology. Three machine learning algorithms, decision tree, random forest and XGBoost, were applied to detect breathing anomalies and faulty data. Model performances were evaluated through cross-validation, assessing classification accuracy, precision and recall scores. The random forest model achieved the highest classification accuracy of 96.75% with data collected at a 0.5m distance. In general, ensemble models like random forest and XGBoost performed better than a single model in classifying the data collected at multiple distances from the light-wave sensing setup.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. M. Elliott, “Why is respiratory rate the neglected vital sign? A narrative review,” Int Arch Nurs Health Care, vol. 2, no. 3, p. 050, 2016.
  2. J. Hogan, “Why don’t nurses monitor the respiratory rates of patients?” British Journal of Nursing, vol. 15, no. 9, pp. 489–492, 2006.
  3. C. H. Van Leuvan and I. Mitchell, “Missed opportunities? An observational study of vital sign measurements,” Crit Care Resusc, vol. 10, no. 2, pp. 111–115, 2008.
  4. S. S. Grover and S. D. Pittman, “Automated detection of sleep disordered breathing using a nasal pressure monitoring device,” Sleep and Breathing, vol. 12, pp. 339–345, 2008.
  5. L. N. Smith, M. L. Smith, M. E. Fletcher, and A. J. Henderson, “A 3D machine vision method for non-invasive assessment of respiratory function,” International Journal of Medical Robotics and Computer Assisted Surgery, vol. 12, no. 2, pp. 179–188, Jun 2016.
  6. H. Abdelnasser, K. A. Harras, and M. Youssef, “UbiBreathe: A ubiquitous non-invasive WiFi-based breathing estimator,” in Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2015, pp. 277–286.
  7. N. Bao, J. Du, C. Wu, D. Hong, J. Chen, R. Nowak, and Z. Lv, “Wi-breath: A wifi-based contactless and real-time respiration monitoring scheme for remote healthcare,” IEEE journal of biomedical and health informatics, 2022.
  8. Z. Guo, W. Yuan, L. Gui, B. Sheng, and F. Xiao, “Breatheband: A fine-grained and robust respiration monitor system using wifi signals,” ACM Transactions on Sensor Networks, vol. 19, no. 4, pp. 1–18, 2023.
  9. U. Saeed, S. Y. Shah, A. Zahid, J. Ahmad, M. A. Imran, Q. H. Abbasi, and S. A. Shah, “Wireless channel modelling for identifying six types of respiratory patterns with SDR sensing and deep multilayer perceptron,” IEEE Sensors Journal, vol. 21, no. 18, pp. 20 833–20 840, 2021.
  10. D. Kocur, D. Novák, and J. Demčák, “A joint localization and breathing rate estimation of static persons using UWB radar,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2017, pp. 1728–1733.
  11. A. T. Purnomo, D.-B. Lin, T. Adiprabowo, and W. F. Hendria, “Non-contact monitoring and classification of breathing pattern for the supervision of people infected by COVID-19,” Sensors, vol. 21, no. 9, p. 3172, 2021.
  12. S. E. Lapinsky and A. C. Easty, “Electromagnetic interference in critical care,” Journal of critical care, vol. 21, no. 3, pp. 267–270, 2006.
  13. P. M. Mariappan, D. R. Raghavan, S. H. A. Aleem, and A. F. Zobaa, “Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A review,” Journal of Advanced Research, vol. 7, no. 5, pp. 727–738, 2016.
  14. M. Taki and S. Watanabe, “Biological and health effects of exposure to electromagnetic field from mobile communications systems,” IATSS research, vol. 25, no. 2, pp. 40–50, 2001.
  15. M. C. Gye and C. J. Park, “Effect of electromagnetic field exposure on the reproductive system,” Clinical and experimental reproductive medicine, vol. 39, no. 1, pp. 1–9, 2012.
  16. X. Zhang, M. Hu, Y. Zhang, G. Zhai, and X.-P. Zhang, “Recent progress of optical imaging approaches for noncontact physiological signal measurement: A review,” Advanced Intelligent Systems, p. 2200345, 2023.
  17. J. Brieva, H. Ponce, and E. Moya-Albor, “Non-contact breathing rate monitoring system using a magnification technique and convolutional networks,” in 15th international symposium on medical information processing and analysis, vol. 11330.   SPIE, 2020, pp. 181–189.
  18. C. Romano, E. Schena, S. Silvestri, and C. Massaroni, “Non-contact respiratory monitoring using an RGB camera for real-world applications,” Sensors, vol. 21, no. 15, p. 5126, 2021.
  19. H. Hwang and E. C. Lee, “Non-contact respiration measurement method based on RGB camera using 1D convolutional neural networks,” Sensors, vol. 21, no. 10, 2021.
  20. X. Tan, M. Hu, G. Zhai, Y. Zhu, W. Li, and X.-P. Zhang, “Lightweight video-based respiration rate detection algorithm: An application case on intensive care,” IEEE Transactions on Multimedia, 2023.
  21. A. P. Addison, P. S. Addison, P. Smit, D. Jacquel, and U. R. Borg, “Noncontact respiratory monitoring using depth sensing cameras: A review of current literature,” Sensors, vol. 21, no. 4, p. 1135, 2021.
  22. J. Kempfle and K. Van Laerhoven, “Respiration rate estimation with depth cameras: An evaluation of parameters,” in Proceedings of the 5th international Workshop on Sensor-based Activity Recognition and Interaction, 2018, pp. 1–10.
  23. Y. Wang, M. Hu, Y. Zhou, Q. Li, N. Yao, G. Zhai, X.-P. Zhang, and X. Yang, “Unobtrusive and automatic classification of multiple people’s abnormal respiratory patterns in real time using deep neural network and depth camera,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8559–8571, 2020.
  24. P. Jagadev and L. I. Giri, “Non-contact monitoring of human respiration using infrared thermography and machine learning,” Infrared Physics and Technology, vol. 104, 2020.
  25. D.-Y. Chen and J.-C. Lai, “HHT-based remote respiratory rate estimation in thermal images,” in 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD).   IEEE, 2017, pp. 263–268.
  26. S. Shu, H. Liang, Y. Zhang, Y. Zhang, and Z. Yang, “Non-contact measurement of human respiration using an infrared thermal camera and the deep learning method,” Measurement Science and Technology, vol. 33, no. 7, p. 075202, 2022.
  27. H. Abuella and S. Ekin, “Non-contact vital signs monitoring through visible light sensing,” IEEE Sensors Journal, vol. 20, no. 7, pp. 3859–3870, 2020.
  28. M. Rehman, R. A. Shah, M. B. Khan, S. A. Shah, N. A. Abuali, X. Yang, A. Alomainy, M. A. Imran, and Q. H. Abbasi, “Improving machine learning classification accuracy for breathing abnormalities by enhancing dataset,” Sensors, vol. 21, no. 20, pp. 1–15, 2021.
  29. M. K. Uçar, M. R. Bozkurt, C. Bilgin, and K. Polat, “Automatic detection of respiratory arrests in OSA patients using PPG and machine learning techniques,” Neural Computing and Applications, vol. 28, no. 10, pp. 2931–2945, 2017.
  30. J. A. Pegoraro, S. Lavault, N. Wattiez, T. Similowski, J. Gonzalez-Bermejo, and E. Birmelé, “Machine-learning based feature selection for a non-invasive breathing change detection,” BioData Mining, vol. 14, no. 1, Dec 2021.
  31. A. R. Fekr, M. Janidarmian, K. Radecka, and Z. Zilic, “Respiration Disorders Classification with Informative Features for m-Health Applications,” IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 3, pp. 733–747, May 2016.
  32. S. H. Kim, Z. W. Geem, and G. T. Han, “A novel human respiration pattern recognition using signals of ultra-wideband radar sensor,” Sensors (Switzerland), vol. 19, no. 15, 2019.
  33. C. Barbosa Pereira, X. Yu, M. Czaplik, V. Blazek, B. Venema, and S. Leonhardt, “Estimation of breathing rate in thermal imaging videos: a pilot study on healthy human subjects,” Journal of Clinical Monitoring and Computing, vol. 31, no. 6, pp. 1241–1254, 2017.
  34. G. Yuan, N. A. Drost, and R. A. McIvor, “Respiratory rate and breathing pattern,” McMaster Univ. Med. J, vol. 10, no. 1, pp. 23–25, 2013.
  35. V. F. Parreira, C. J. Bueno, D. C. França, D. S. Vieira, D. R. Pereira, and R. R. Britto, “Breathing pattern and thoracoabdominal motion in healthy individuals: influence of age and sex,” Brazilian Journal of Physical Therapy, vol. 14, pp. 411–416, 2010.
  36. M. Ali, A. Elsayed, A. Mendez, Y. Savaria, and M. Sawan, “Contact and remote breathing rate monitoring techniques: A review,” IEEE Sensors Journal, vol. 21, no. 13, pp. 14 569–14 586, 2021.
  37. A. G. de Moraes and S. Surani, “Effects of diabetic ketoacidosis in the respiratory system,” World Journal of Diabetes, vol. 10, no. 1, pp. 16–22, 2019.
  38. R. S. Leung, V. R. Comondore, C. M. Ryan, and D. Stevens, “Mechanisms of sleep-disordered breathing: Causes and consequences,” pp. 213–230, 2012.
  39. G. Weinreich, J. Armitstead, V. Töpfer, Y. M. Wang, Y. Wang, and H. Teschler, “Validation of ApneaLink as screening device for Cheyne-Stokes respiration,” Sleep, vol. 32, no. 4, pp. 553–557, 2009.
  40. F. Gfeller and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation,” Proceedings of the IEEE, vol. 67, no. 11, pp. 1474–1486, 1979.
  41. P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2047–2077, 2015.
  42. Model SR830 DSP Lock-In Amplifier. Stanford Research Systems. Accessed: Apr. 3, 2024. [Online]. Available: https://www.thinksrs.com/downloads/pdfs/manuals/SR830m.pdf
  43. K. Y. Gavrilov and T. Y. Shevgunov, “A new model of human respiration for algorithm simulation modeling in radar applications,” in 2020 Systems of Signals Generating and Processing in the Field of on Board Communications, 2020, pp. 1–5.
  44. TeraRanger Evo 60m. Terabee. Accessed: Apr. 3, 2024. [Online]. Available: https://www.mouser.com/datasheet/2/944/TeraRanger-Evo-60m-Specification-sheet-3-1729032.pdf
  45. DAQC2plate - Affordable high precision multifunctional Data Acquisition and Controller board. Pi-Plates. Accessed: Apr. 3, 2024. [Online]. Available: https://pi-plates.com/daqc2r1/
  46. T. R. Gravelyn and M. John G. Weg, “Respiratory rate as an indicator of acute respiratory dysfunction,” The Journal of the American Medical Association, vol. 244, no. 10, pp. 1123–1125, 1980.
  47. O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4, p. e1249, 2018.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com