Descriptional Complexity of Finite Automata -- Selected Highlights (2301.03708v4)
Abstract: The state complexity, respectively, nondeterministic state complexity of a regular language $L$ is the number of states of the minimal deterministic, respectively, of a minimal nondeterministic finite automaton for $L$. Some of the most studied state complexity questions deal with size comparisons of nondeterministic finite automata of differing degree of ambiguity. More generally, if for a regular language we compare the size of description by a finite automaton and by a more powerful language definition mechanism, such as a context-free grammar, we encounter non-recursive trade-offs. Operational state complexity studies the state complexity of the language resulting from a regularity preserving operation as a function of the complexity of the argument languages. Determining the state complexity of combined operations is generally challenging and for general combinations of operations that include intersection and marked concatenation it is uncomputable.
- Hartmanis J. On Gödel speed-up and succinctness of language representations. Theoretical Computer Science, 1983. 26(3):335–342. 10.1016/0304-3975(83)90016-6.
- Lupanov OB. A comparison of two types of finite sources (O sravnenii dvukh tipov konechnykh istochnikov). Problemy Kibernetiki, 1963. 9:321–326.
- Maslov AN. Estimates of the number of states of finite automata. Soviet Math. Dokl., 1970. 11(5):1373–1375.
- Meyer AR, Fischer MJ. Economy of description by automata, grammars, and formal systems. In: Proceedings of SWAT 1971. IEEE, 1971 pp. 188–191. 10.1109/SWAT.1971.11.
- Moore FR. On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput., 1971. C-20(10):1211–1214. 10.1109/T-C.1971.223108.
- Stearns RE. A regularity test for pushdown machines. Information and Control, 1967. 11(3):323–340. 10.1016/S0019-9958(67)90591-8.
- Sakoda WJ, Sipser M. Nondeterminism and the size of two way finite automata. In: Proceedings of STOC 1978. ACM, 1978 pp. 275–286. 10.1145/800133.804357.
- Berman P. A note on sweeping automata. In: Proceedings of ICALP 1980, volume 85 of LNCS. Springer, 1980 pp. 91–97. 10.1007/3-540-10003-2_62.
- Sipser M. Lower bounds on the size of sweeping automata. Journal of Computer and System Sciences, 1980. 21(2):195–202. 10.1016/0022-0000(80)90034-3.
- Hromkovič J, Schnitger G. Nondeterminism versus determinism for two-way finite automata: Generalizations of Sipser’s separation. In: Proceedings of ICALP 2003, volume 2719 of LNCS. Springer, 2003 pp. 439–451. 10.1007/3-540-45061-0_36.
- Kapoutsis CA. Two-way automata versus logarithmic space. Theory of Computing Systems, 2014. 55:421–447. 10.1007/s00224-013-9465-0.
- Pighizzini G. Two-way finite automata: Old and recent results. Fundamenta Informaticae, 2013. 126(2–3):225–246. 10.3233/FI-2013-879.
- A survey on operational state complexity. Journal of Automata, Languages and Combinatorics, 2017. 21(4):251–310. 10.25596/jalc-2016-251.
- Descriptional complexity of machines with limited resources. Journal of Universal Computer Science, 2002. 8(2):193–234. 10.3217/jucs-008-02-0193.
- Gruber H, Holzer M. From finite automata to regular expressions and back — A summary on descriptional complexity. International Journal of Foundations of Computer Science, 2015. 26(8):1009–1040. 10.1142/S0129054115400110.
- Descriptional complexity of regular languages. In: Pin JÉ (ed.), Handbook of Automata Theory, volume 1, pp. 411–457. EMS Press, 2021. 10.4171/AUTOMATA-1/12.
- Holzer M, Kutrib M. Descriptional and computational complexity of finite automata—A survey. Information and Computation, 2011. 209(3):456–470. 10.1016/j.ic.2010.11.013.
- Hromkovič J. Descriptional complexity of finite automata: Concepts and open problems. Journal of Automata, Languages and Combinatorics, 2002. 7(4):519–531. 10.25596/jalc-2002-519.
- Yu S. Regular languages. In: Rozenberg G, Salomaa A (eds.), Handbook of Formal Languages, volume 1, pp. 41–110. Springer, 1997. 10.1007/978-3-642-59136-5_2.
- Hartmanis J. On the succinctness of different representations of languages. SIAM Journal of Computing, 1980. 9(1):114–120. 10.1137/0209010.
- Hartmanis J. Context-free languages and Turing machine computations. In: Mathematical Aspects of Computer Science, volume 19 of Proc. Sympos. Appl. Math. American Mathematical Society, 1967 pp. 42–51. 10.1090/psapm/019/0235938.
- Kutrib M. The phenomenon of non-recursive trade-offs. International Journal of Foundations of Computer Science, 2005. 16(5):957–973. 10.1142/S0129054105003406.
- Schmidt EM. Succinctness of descriptions of context-free, regular, and finite languages. Ph.D. thesis, Cornell University, 1978.
- Leiss E. Succinct representation of regular languages by boolean automata. Theoretical Computer Science, 1981. 13(3):323–330. 10.1016/S0304-3975(81)80005-9.
- Leung H. Descriptional complexity of NFA of different ambiguity. International Journal of Foundations of Computer Science, 2005. 16(5):975–984. 10.1142/S0129054105003418.
- Ravikumar B, Ibarra OH. Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM Journal of Computing, 1989. 18(6):1263–1282. 10.1137/0218083.
- Leung H. Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM Journal of Computing, 1998. 27(4):1073–1082. 10.1137/S0097539793252092.
- Communication complexity method for measuring nondeterminism in finite automata. Information and Computation, 2002. 172(2):202–217. 10.1006/inco.2001.3069.
- Hromkovič J, Schnitger G. Ambiguity and communication. Theory of Computing Systems, 2011. 48:517–534. 10.1007/s00224-010-9277-4.
- On measuring nondeterminism in regular languages. Information and Computation, 1990. 86(2):179–194. 10.1016/0890-5401(90)90053-K.
- Björklund H, Martens W. The tractability frontier for NFA minimization. Journal of Computer and System Sciences, 2012. 78(1):198–210. 10.1016/j.jcss.2011.03.001.
- Ambiguity, nondeterminism and state complexity of finite automata. Acta Cybernetica, 2017. 23(1):141–157. 10.14232/actacyb.23.1.2017.9.
- State complexity of finite tree width NFAs. Journal of Automata, Languages and Combinatorics, 2012. 17(2–4):245–264. 10.25596/jalc-2012-245.
- Yu S. State complexity of regular languages. Journal of Automata, Languages and Combinatorics, 2001. 6(2):221–234. 10.25596/jalc-2001-221.
- Alur R, Madhusudan P. Visibly pushdown languages. In: Proceedings of STOC 2004. ACM, 2004 pp. 202–211. 10.1145/1007352.1007390.
- Okhotin A, Salomaa K. Complexity of input-driven pushdown automata. ACM SIGACT News, 2014. 45(2):47–67. 10.1145/2636805.2636821.
- State complexity of combined operations with two basic operations. Theoretical Computer Science, 2012. 437:82–102. 10.1016/j.tcs.2012.02.030.
- Estimation of state complexity of combined operations. Theoretical Computer Science, 2009. 410(35):3272–3280. 10.1016/j.tcs.2009.03.026.
- Undecidability of state complexity. International Journal of Computer Mathematics, 2013. 90(6):1310–1320. 10.1080/00207160.2012.704994.