Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the challenges to learn from Natural Data Streams (2301.03495v1)

Published 9 Jan 2023 in cs.CV and cs.LG

Abstract: In real-world contexts, sometimes data are available in form of Natural Data Streams, i.e. data characterized by a streaming nature, unbalanced distribution, data drift over a long time frame and strong correlation of samples in short time ranges. Moreover, a clear separation between the traditional training and deployment phases is usually lacking. This data organization and fruition represents an interesting and challenging scenario for both traditional Machine and Deep Learning algorithms and incremental learning agents, i.e. agents that have the ability to incrementally improve their knowledge through the past experience. In this paper, we investigate the classification performance of a variety of algorithms that belong to various research field, i.e. Continual, Streaming and Online Learning, that receives as training input Natural Data Streams. The experimental validation is carried out on three different datasets, expressly organized to replicate this challenging setting.

Citations (2)

Summary

We haven't generated a summary for this paper yet.