Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaudin Hamiltonians on unitarizable modules over classical Lie (super)algebras (2301.03138v3)

Published 9 Jan 2023 in math-ph, math.MP, and math.RT

Abstract: Let $M$ be a tensor product of unitarizable irreducible highest weight modules over the Lie (super)algebra $\mathcal{G}$, where $\mathcal{G}$ is $\mathfrak{gl}(m|n)$, $\mathfrak{osp}(2m|2n)$ or $\mathfrak{spo}(2m|2n)$. We show, using super duality, that the singular eigenvectors of the (super) Gaudin Hamiltonians for $\mathcal{G}$ on $M$ can be obtained from the singular eigenvectors of the Gaudin Hamiltonians for the corresponding Lie algebras on some tensor products of finite-dimensional irreducible modules. As a consequence, the (super) Gaudin Hamiltonians for $\mathcal{G}$ are diagonalizable on the space spanned by singular vectors of $M$ and hence on $M$. In particular, we establish the diagonalization of the Gaudin Hamiltonians, associated to any of the orthogonal Lie algebra $\mathfrak{so}(2n)$ and the symplectic Lie algebra $\mathfrak{sp}(2n)$, on the tensor product of infinite-dimensional unitarizable irreducible highest weight modules.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets