Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Weihrauch degree of the additive Ramsey theorem (2301.02833v2)

Published 7 Jan 2023 in cs.LO and math.LO

Abstract: We characterize the strength, in terms of Weihrauch degrees, of certain problems related to Ramsey-like theorems concerning colourings of the rationals and of the natural numbers. The theorems we are chiefly interested in assert the existence of almost-homogeneous sets for colourings of pairs of rationals respectively natural numbers satisfying properties determined by some additional algebraic structure on the set of colours. In the context of reverse mathematics, most of the principles we study are equivalent to $\Sigma0_2$-induction over $\mathrm{RCA}0$. The associated problems in the Weihrauch lattice are related to $\mathrm{TC}\mathbb{N}*$, $(\mathrm{LPO}')*$ or their product, depending on their precise formalizations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Closed choice and a uniform low basis theorem. Annals of Pure and Applied Logic, 163(8):968–1008, 2012. doi:10.1016/j.apal.2011.12.020.
  2. Completion of choice. Annals of Pure and Applied Logic, 172(3):102914, 2021. doi:10.1016/j.apal.2020.102914.
  3. Weihrauch Complexity in Computable Analysis, pages 367–417. Springer International Publishing, Cham, 2021. doi:10.1007/978-3-030-59234-9_11.
  4. On the uniform computational content of Ramsey’s theorem. The Journal of Symbolic Logic, 82, 08 2015. doi:10.1017/jsl.2017.43.
  5. Regular languages of words over countable linear orderings. In ICALP 2011 proceedings, Part II, pages 125–136, 2011. doi:10.1007/978-3-642-22012-8_9.
  6. Embeddability of graphs and Weihrauch degrees. arXiv 2305.00935, 2023. doi:10.48550/arXiv.2305.00935.
  7. Combinatorial principles equivalent to weak induction. Comput., 9(3-4):219–229, 2020. doi:10.3233/COM-180244.
  8. Ramsey’s theorem and products in the Weihrauch degrees. Computability, 9(2), 2020. doi:10.3233/COM-180203.
  9. The tree pigeonhole principle in the Weihrauch degrees. unpublished manuscript.
  10. On the first-order parts of problems in the Weihrauch degrees. arXiv:2301.12733, 2023. URL: https://arxiv.org/abs/2301.12733.
  11. Weaker cousins of ramsey’s theorem over a weak base theory. Annals of Pure and Applied Logic, 172(10):103028, 2021. URL: https://www.sciencedirect.com/science/article/pii/S0168007221000865, doi:10.1016/j.apal.2021.103028.
  12. Coloring the rationals in reverse mathematics. Computability, 6(4):319–331, 2017. doi:10.3233/COM-160067.
  13. Kenneth Gill. Two studies in complexity. PhD thesis, Pennsylvania State University, 2023.
  14. Finding descending sequences through ill-founded linear orders. Journal of Symbolic Logic, 86(2), 2021. doi:10.1017/jsl.2021.15.
  15. Denis R. Hirschfeldt. Slicing the Truth. World Scientific, 2014. doi:10.1142/9208.
  16. Jeffry L. Hirst. Combinatorics in subsystems of second order arithmetic. Phd thesis, Pennsylvania State University, 1987.
  17. The logical strength of Büchi’s decidability theorem. Log. Methods Comput. Sci., 15(2), 2019. doi:10.23638/LMCS-15(2:16)2019.
  18. Finite choice, convex choice and finding roots. Logical Methods in Computer Science, 2015. doi:10.2168/LMCS-11(4:6)2015.
  19. A topological view on algebraic computation models. J. Complex., 44:1–22, 2018. doi:10.1016/j.jco.2017.08.003.
  20. Infinite words : automata, semigroups, logic and games. Pure and applied mathematics. 2004.
  21. On the Weihrauch degree of the additive Ramsey theorem over the rationals. In Ulrich Berger, Johanna N. Y. Franklin, Florin Manea, and Arno Pauly, editors, Revolutions and Revelations in Computability - 18th Conference on Computability in Europe, CiE 2022, Swansea, UK, July 11-15, 2022, Proceedings, volume 13359 of Lecture Notes in Computer Science, pages 259–271. Springer, 2022. doi:10.1007/978-3-031-08740-0_22.
  22. Saharon Shelah. The monadic theory of order. Ann. of Math. (2), 102(3):379–419, 1975.
  23. Stephen G. Simpson. Subsystems of second order arithmetic. Perspectives in Mathematical Logic. 1999. doi:10.1007/978-3-642-59971-2.
  24. Factorization of polynomials and Σ10subscriptsuperscriptΣ01\Sigma^{0}_{1}roman_Σ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT induction. Annals of Pure and Applied Logic, 31:289–306, 1986. URL: https://www.sciencedirect.com/science/article/pii/0168007286900746, doi:10.1016/0168-0072(86)90074-6.
  25. Algebraic properties of the first-order part of a problem. Ann. Pure Appl. Log., 174(7):103270, 2023. doi:10.1016/j.apal.2023.103270.
Citations (5)

Summary

We haven't generated a summary for this paper yet.