Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cox Point Processes for Multi Altitude LEO Satellite Networks (2301.02469v3)

Published 6 Jan 2023 in eess.SP, cs.IT, math.IT, and math.PR

Abstract: To model existing or future low Earth orbit (LEO) satellite networks leveraging multiple constellations, we propose a simple analytical approach to represent the clustering of satellites on orbits. More precisely, we develop a variable-altitude Poisson orbit process that effectively captures the geometric fact that satellites are always positioned on orbits, and these orbits may vary in altitude. Conditionally on the orbit process, satellites situated on these orbits are modeled as linear Poisson point processes, thereby forming a Cox point process. For this model, we derive useful statistics, including the distribution of the distance from the typical user to its nearest visible satellite, the outage probability, the Laplace functional of the proposed Cox satellite point process, and the Laplace transform of the interference power from the Cox-distributed satellites under general fading. The derived statistics enable the evaluation of the performance of such LEO satellite communication systems as functions of network parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (9)
  1. Y. Su, Y. Liu, Y. Zhou, J. Yuan, H. Cao, and J. Shi, “Broadband LEO satellite communications: Architectures and key technologies,” IEEE Wireless Commn., vol. 26, no. 2, pp. 55–61, 2019.
  2. A. Guidotti, A. Vanelli-Coralli, M. Conti, S. Andrenacci, S. Chatzinotas, N. Maturo, B. Evans, A. Awoseyila, A. Ugolini, T. Foggi, L. Gaudio, N. Alagha, and S. Cioni, “Architectures and key technical challenges for 5G systems incorporating satellites,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2624–2639, 2019.
  3. 3GPP TR 38.821, “Solutions for NR to support non-terrestrial networks (NTN),” 3GPP TR 38.821.
  4. N. Okati, T. Riihonen, D. Korpi, I. Angervuori, and R. Wichman, “Downlink coverage and rate analysis of low earth orbit satellite constellations using stochastic geometry,” IEEE Trans. Commun., vol. 68, no. 8, pp. 5120–5134, 2020.
  5. A. Talgat, M. A. Kishk, and M.-S. Alouini, “Stochastic geometry-based analysis of LEO satellite communication systems,” IEEE Commun. Lett., vol. 25, no. 8, pp. 2458–2462, 2021.
  6. D.-H. Na, K.-H. Park, Y.-C. Ko, and M.-S. Alouini, “Performance analysis of satellite communication systems with randomly located ground users,” IEEE Trans. Wireless Commun., vol. 21, no. 1, pp. 621–634, 2022.
  7. D.-H. Jung, J.-G. Ryu, W.-J. Byun, and J. Choi, “Performance analysis of satellite communication system under the shadowed-Rician fading: A stochastic geometry approach,” IEEE Trans. Commun., vol. 70, no. 4, pp. 2707–2721, 2022.
  8. C.-S. Choi and F. Baccelli, “A novel analytical model for LEO satellite constellations leveraging Cox point processes,” arXiv preprint arXiv:2212.03549, 2022.
  9. F. Baccelli and B. Błaszczyszyn, “Stochastic geometry and wireless networks: volume I theory,” Foundations and Trends in Networking, vol. 3, no. 3–4, pp. 249–449, 2010.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com