Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Neural Force Manifolds for Sim2Real Robotic Symmetrical Paper Folding (2301.01968v4)

Published 5 Jan 2023 in cs.RO

Abstract: Robotic manipulation of slender objects is challenging, especially when the induced deformations are large and nonlinear. Traditionally, learning-based control approaches, such as imitation learning, have been used to address deformable material manipulation. These approaches lack generality and often suffer critical failure from a simple switch of material, geometric, and/or environmental (e.g., friction) properties. This article tackles a fundamental but difficult deformable manipulation task: forming a predefined fold in paper with only a single manipulator. A sim2real framework combining physically-accurate simulation and machine learning is used to train a deep neural network capable of predicting the external forces induced on the manipulated paper given a grasp position. We frame the problem using scaling analysis, resulting in a control framework robust against material and geometric changes. Path planning is then carried out over the generated ``neural force manifold'' to produce robot manipulation trajectories optimized to prevent sliding, with offline trajectory generation finishing 15$\times$ faster than previous physics-based folding methods. The inference speed of the trained model enables the incorporation of real-time visual feedback to achieve closed-loop model-predictive control. Real-world experiments demonstrate that our framework can greatly improve robotic manipulation performance compared to state-of-the-art folding strategies, even when manipulating paper objects of various materials and shapes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. Y. Kita, F. Kanehiro, T. Ueshiba, and N. Kita, “Clothes handling based on recognition by strategic observation,” in 2011 11th IEEE-RAS International Conference on Humanoid Robots, pp. 53–58, IEEE, 2011.
  2. A. Doumanoglou, J. Stria, G. Peleka, I. Mariolis, V. Petrik, A. Kargakos, L. Wagner, V. Hlaváč, T.-K. Kim, and S. Malassiotis, “Folding clothes autonomously: A complete pipeline,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1461–1478, 2016.
  3. M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel, “Bringing clothing into desired configurations with limited perception,” in 2011 IEEE international conference on robotics and automation, pp. 3893–3900, IEEE, 2011.
  4. J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding,” in 2010 IEEE International Conference on Robotics and Automation, pp. 2308–2315, IEEE, 2010.
  5. L. Twardon and H. Ritter, “Interaction skills for a coat-check robot: Identifying and handling the boundary components of clothes,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3682–3688, IEEE, 2015.
  6. A. Doumanoglou, A. Kargakos, T.-K. Kim, and S. Malassiotis, “Autonomous active recognition and unfolding of clothes using random decision forests and probabilistic planning,” in 2014 IEEE international conference on robotics and automation, pp. 987–993, IEEE, 2014.
  7. J. Schulman, A. Gupta, S. Venkatesan, M. Tayson-Frederick, and P. Abbeel, “A case study of trajectory transfer through non-rigid registration for a simplified suturing scenario,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4111–4117, IEEE, 2013.
  8. W. H. Lui and A. Saxena, “Tangled: Learning to untangle ropes with rgb-d perception,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 837–844, IEEE, 2013.
  9. T. Bhattacharjee, G. Lee, H. Song, and S. S. Srinivasa, “Towards robotic feeding: Role of haptics in fork-based food manipulation,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1485–1492, 2019.
  10. W. Wang, D. Berenson, and D. Balkcom, “An online method for tight-tolerance insertion tasks for string and rope,” in 2015 IEEE International Conference on Robotics and Automation, pp. 2488–2495, IEEE, 2015.
  11. Y. Yamakawa, A. Namiki, and M. Ishikawa, “Simple model and deformation control of a flexible rope using constant, high-speed motion of a robot arm,” in 2012 IEEE International Conference on Robotics and Automation, pp. 2249–2254, IEEE, 2012.
  12. A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine, “Combining self-supervised learning and imitation for vision-based rope manipulation,” in 2017 IEEE international conference on robotics and automation (ICRA), pp. 2146–2153, IEEE, 2017.
  13. S. Kudoh, T. Gomi, R. Katano, T. Tomizawa, and T. Suehiro, “In-air knotting of rope by a dual-arm multi-finger robot,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6202–6207, IEEE, 2015.
  14. Y. Yamakawa, A. Namiki, and M. Ishikawa, “Motion planning for dynamic knotting of a flexible rope with a high-speed robot arm,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 49–54, IEEE, 2010.
  15. V. Petrík, V. Smutnỳ, P. Krsek, and V. Hlaváč, “Physics-based model of a rectangular garment for robotic folding,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 951–956, 2016.
  16. V. Petrík and V. Kyrki, “Feedback-based fabric strip folding,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 773–778, 2019.
  17. V. Petrík, V. Smutnỳ, and V. Kyrki, “Static stability of robotic fabric strip folding,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 5, pp. 2493–2500, 2020.
  18. H. K. H. Kim, D. Bourne, S. Gupta, and S. S. Krishnan, “Automated process planning for robotic sheet metal bending operations,” Journal of Manufacturing Systems, vol. 17, pp. 338 – 360, September 1998.
  19. D. J. Balkcom and M. T. Mason, “Robotic origami folding,” The International Journal of Robotics Research, vol. 27, no. 5, pp. 613–627, 2008.
  20. S. Miller, J. van den Berg, M. Fritz, T. Darrell, K. Goldberg, and P. Abbeel, “A geometric approach to robotic laundry folding,” The International Journal of Robotics Research, vol. 31, no. 2, pp. 249–267, 2012.
  21. A. X. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel, “Learning force-based manipulation of deformable objects from multiple demonstrations,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 177–184, IEEE, 2015.
  22. A. X. Lee, A. Gupta, H. Lu, S. Levine, and P. Abbeel, “Learning from multiple demonstrations using trajectory-aware non-rigid registration with applications to deformable object manipulation,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5265–5272, 2015.
  23. M. Rambow, T. Schauß, M. Buss, and S. Hirche, “Autonomous manipulation of deformable objects based on teleoperated demonstrations,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2809–2814, IEEE, 2012.
  24. P.-C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata, “Repeatable folding task by humanoid robot worker using deep learning,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 397–403, 2017.
  25. J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement learning for deformable object manipulation,” in Conference on Robot Learning, pp. 734–743, PMLR, 2018.
  26. X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking deep reinforcement learning for deformable object manipulation,” arXiv preprint arXiv:2011.07215, 2020.
  27. Y. Zheng, F. F. Veiga, J. Peters, and V. J. Santos, “Autonomous learning of page flipping movements via tactile feedback,” IEEE Transactions on Robotics, 2022.
  28. W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive representations for deformable objects using contrastive estimation,” arXiv preprint arXiv:2003.05436, 2020.
  29. Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding deformable objects using predictive simulation and trajectory optimization,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6000–6006, 2015.
  30. J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey,” The International Journal of Robotics Research, vol. 37, no. 7, pp. 688–716, 2018.
  31. H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and control methods for deformable object manipulation,” Science Robotics, vol. 6, no. 54, p. eabd8803, 2021.
  32. J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi, D. Berenson, F. Ficuciello, K. Harada, J. Kober, X. Li, et al., “Challenges and outlook in robotic manipulation of deformable objects,” IEEE Robotics & Automation Magazine, vol. 29, no. 3, pp. 67–77, 2022.
  33. H. Wakamatsu and S. Hirai, “Static modeling of linear object deformation based on differential geometry,” The International Journal of Robotics Research, vol. 23, no. 3, pp. 293–311, 2004.
  34. Y.-B. Jia, F. Guo, and H. Lin, “Grasping deformable planar objects: Squeeze, stick/slip analysis, and energy-based optimalities,” The International Journal of Robotics Research, vol. 33, no. 6, pp. 866–897, 2014.
  35. C. Elbrechter, R. Haschke, and H. Ritter, “Folding paper with anthropomorphic robot hands using real-time physics-based modeling,” in 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 210–215, IEEE, 2012.
  36. A. Namiki and S. Yokosawa, “Robotic origami folding with dynamic motion primitives,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5623–5628, IEEE, 2015.
  37. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun, “Discrete elastic rods,” in ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08, (New York, NY, USA), Association for Computing Machinery, 2008.
  38. American Mathematical Soc., 2021.
  39. D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically deformable models,” in Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH 87), pp. 205–214, 1987.
  40. D. Terzopoulos and K. Fleischer, “Modeling inelastic deformation: Viscolelasticity, plasticity, fracture,” in Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH 88), pp. 269–278, 1988.
  41. D. Terzopoulos and K. Fleischer, “Deformable models,” The Visual Computer, vol. 4, no. 6, pp. 306–331, 1988.
  42. A. Choi, D. Tong, M. K. Jawed, and J. Joo, “Implicit contact model for discrete elastic rods in knot tying,” Journal of Applied Mechanics, vol. 88, no. 5, 2021.
  43. D. Tong, A. Borum, and M. K. Jawed, “Automated stability testing of elastic rods with helical centerlines using a robotic system,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1126–1133, 2021.
  44. M. K. Jawed, F. Da, J. Joo, E. Grinspun, and P. M. Reis, “Coiling of elastic rods on rigid substrates,” Proceedings of the National Academy of Sciences, vol. 111, no. 41, pp. 14663–14668, 2014.
  45. D. Tong, A. Choi, J. Joo, and M. K. Jawed, “A fully implicit method for robust frictional contact handling in elastic rods,” Extreme Mechanics Letters, vol. 58, p. 101924, 2023.
  46. J. Shi and Tomasi, “Good features to track,” in 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600, 1994.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com