Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding Needles in Haystack: Formal Generative Models for Efficient Massive Parallel Simulations (2301.01594v1)

Published 3 Jan 2023 in cs.LG, cs.SY, and eess.SY

Abstract: The increase in complexity of autonomous systems is accompanied by a need of data-driven development and validation strategies. Advances in computer graphics and cloud clusters have opened the way to massive parallel high fidelity simulations to qualitatively address the large number of operational scenarios. However, exploration of all possible scenarios is still prohibitively expensive and outcomes of scenarios are generally unknown apriori. To this end, the authors propose a method based on bayesian optimization to efficiently learn generative models on scenarios that would deliver desired outcomes (e.g. collisions) with high probability. The methodology is integrated in an end-to-end framework, which uses the OpenSCENARIO standard to describe scenarios, and deploys highly configurable digital twins of the scenario participants on a Virtual Test Bed cluster.

Summary

We haven't generated a summary for this paper yet.