Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Values of E-functions are not Liouville numbers (2301.01158v3)

Published 3 Jan 2023 in math.NT

Abstract: Shidlovskii has given a linear independence measure of values of $E$-functions with rational Taylor coefficients at a rational point, not a singularity of the underlying differential system satisfied by these $E$-functions. Recently, Beukers has proved a qualitative linear independence theorem for the values at an algebraic point of $E$-functions with arbitrary algebraic Taylor coefficients. In this paper, we obtain an analogue of Shidlovskii's measure for values of arbitrary $E$-functions at algebraic points. This enables us to solve a long standing problem by proving that the value of an $E$-function at an algebraic point is never a Liouville number. We also prove that values at rational points of $E$-functions with rational Taylor coefficients are linearly independent over $\overline{\mathbb{Q}}$ if and only if they are linearly independent over $\mathbb{Q}$. Our methods rest upon improvements of results obtained by Andr\'e and Beukers in the theory of $E$-operators.

Citations (3)

Summary

We haven't generated a summary for this paper yet.