Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A time domain a posteriori error bound for balancing-related model order reduction (2301.01052v1)

Published 3 Jan 2023 in math.DS, cs.NA, and math.NA

Abstract: The aim in model order reduction is to approximate an input-output map described by a large-scale dynamical system with a low-dimensional and cheaper-to-evaluate reduced order model. While high fidelity can be achieved by a variety of methods, only a few of them allow for rigorous error control. In this paper, we propose a rigorous error bound for the reduction of linear systems with balancing-related reduction methods. More specifically, we consider the simulation over a finite time interval and provide an a posteriori adaption of the standard a priori bound for Balanced Truncation and Balanced Singular Perturbation Approximation in that setting, which improves the error estimation while still yielding a rigorous bound. Our result is based on an error splitting induced by a Fourier series approximation of the input and a subsequent refined error analysis. We make use of system-theoretic concepts, such as the notion of signal generator driven systems, steady-states and observability. Our bound is also applicable in the presence of nonzero initial conditions. Numerical evidence for the sharpness of the bound is given.

Summary

We haven't generated a summary for this paper yet.