Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fast and accurate kernel-based independence test with applications to high-dimensional and functional data (2301.00967v1)

Published 3 Jan 2023 in stat.ME, math.ST, and stat.TH

Abstract: Testing the dependency between two random variables is an important inference problem in statistics since many statistical procedures rely on the assumption that the two samples are independent. To test whether two samples are independent, a so-called HSIC (Hilbert--Schmidt Independence Criterion)-based test has been proposed. Its null distribution is approximated either by permutation or a Gamma approximation. In this paper, a new HSIC-based test is proposed. Its asymptotic null and alternative distributions are established. It is shown that the proposed test is root-n consistent. A three-cumulant matched chi-squared approximation is adopted to approximate the null distribution of the test statistic. By choosing a proper reproducing kernel, the proposed test can be applied to many different types of data including multivariate, high-dimensional, and functional data. Three simulation studies and two real data applications show that in terms of level accuracy, power, and computational cost, the proposed test outperforms several existing tests for multivariate, high-dimensional, and functional data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.