Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher-order Refinements of Small Bandwidth Asymptotics for Density-Weighted Average Derivative Estimators (2301.00277v2)

Published 31 Dec 2022 in econ.EM, math.ST, stat.ME, and stat.TH

Abstract: The density weighted average derivative (DWAD) of a regression function is a canonical parameter of interest in economics. Classical first-order large sample distribution theory for kernel-based DWAD estimators relies on tuning parameter restrictions and model assumptions that imply an asymptotic linear representation of the point estimator. These conditions can be restrictive, and the resulting distributional approximation may not be representative of the actual sampling distribution of the statistic of interest. In particular, the approximation is not robust to bandwidth choice. Small bandwidth asymptotics offers an alternative, more general distributional approximation for kernel-based DWAD estimators that allows for, but does not require, asymptotic linearity. The resulting inference procedures based on small bandwidth asymptotics were found to exhibit superior finite sample performance in simulations, but no formal theory justifying that empirical success is available in the literature. Employing Edgeworth expansions, this paper shows that small bandwidth asymptotic approximations lead to inference procedures with higher-order distributional properties that are demonstrably superior to those of procedures based on asymptotic linear approximations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Ahn, H., Ichimura, H., Powell, J. L., and Ruud, P. A. (2018). “Simple Estimators for Invertible Index Models,” Journal of Business & Economic Statistics, 36(1), 1–10.
  2. Aradillas-Lopez, A., Honoré, B. E., and Powell, J. L. (2007). “Pairwise Difference Estimation with Nonparametric Control Variables,” International Economic Review, 48(4), 1119–1158.
  3. Bickel, P. J., Götze, F., and van Zwet, W. R. (1986). “The Edgeworth Expansion for U𝑈Uitalic_U-Statistics of Degree Two,” Annals of Statistics, 14(4), 1463–1484.
  4. Blundell, R. W. and Powell, J. L. (2004). “Endogeneity in Semiparametric Binary Response Models,” Review of Economic Studies, 71(3), 655–679.
  5. Callaert, H. and Veraverbeke, N. (1981). “The Order of the Normal Approximation for a Studentized U-statistic,” Annals of Statistics, 9(1), 194–200.
  6. Calonico, S., Cattaneo, M. D., and Farrell, M. H. (2018). “On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference,” Journal of the American Statistical Association, 113(522), 767–779.
  7. Calonico, S., Cattaneo, M. D., and Farrell, M. H. (2022). “Coverage Error Optimal Confidence Intervals for Local Polynomial Regression,” Bernoulli, 28(4), 2998–3022.
  8. Cattaneo, M. D., Crump, R. K., and Jansson, M. (2010). “Robust Data-Driven Inference for Density-Weighted Average Derivatives,” Journal of the American Statistical Association, 105(491), 1070–1083.
  9. Cattaneo, M. D., Crump, R. K., and Jansson, M. (2013). “Generalized Jackknife Estimators of Weighted Average Derivatives (with Discussions and Rejoinder),” Journal of the American Statistical Association, 108(504), 1243–1268.
  10. Cattaneo, M. D., Crump, R. K., and Jansson, M. (2014a). “Small Bandwidth Asymptotics for Density-Weighted Average Derivatives,” Econometric Theory, 30(1), 176–200.
  11. Cattaneo, M. D., Crump, R. K., and Jansson, M. (2014b). “Bootstrapping Density-Weighted Average Derivatives,” Econometric Theory, 30(6), 1135–1164.
  12. Cattaneo, M. D. and Jansson, M. (2018). “Kernel-Based Semiparametric Estimators: Small Bandwidth Asymptotics and Bootstrap Consistency,” Econometrica, 86(3), 955–995.
  13. Cattaneo, M. D. and Jansson, M. (2022). “Average Density Estimators: Efficiency and Bootstrap Consistency,” Econometric Theory, 38(6), 1140–1174.
  14. Cattaneo, M. D., Jansson, M., and Ma, X. (2019). “Two-step Estimation and Inference with Possibly Many Included Covariates,” Review of Economic Studies, 86(3), 210–245.
  15. Cattaneo, M. D., Jansson, M., and Newey, W. K. (2018a). “Alternative Asymptotics and the Partially Linear Model with Many Regressors,” Econometric Theory, 34(2), 277–301.
  16. Cattaneo, M. D., Jansson, M., and Newey, W. K. (2018b). “Inference in Linear Regression Models with Many Covariates and Heteroscedasticity,” Journal of the American Statistical Association, 113(523), 1350–1361.
  17. Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K., and Robins, J. M. (2022). “Locally Robust Semiparametric Estimation,” Econometrica, 90(4), 1501–1535.
  18. Efron, B. and Stein, C. (1981). “The Jackknife Estimate of Variance,” Annals of Statistics, 9(3), 586–596.
  19. Giné, E., Latała, R., and Zinn, J. (2000). “Exponential and Moment Inequalities for U-Statistics,” In E. Giné, D. M. Mason, and J. A. Wellner (eds.) High Dimensional Probability II, 13–38, Boston: Birkhäuser.
  20. Graham, B. S., Niu, F., and Powell, J. L. (2023). “Kernel Density Estimation for Undirected Dyadic Data,” Journal of Econometrics, forthcoming.
  21. Hoeffding, W. (1948). “A Class of Statistics with Asymptotically Normal Distribution,” Annals of Mathematical Statistics, 19(3), 293–325.
  22. Honoré, B. E. and Powell, J. L. (1994). “Pairwise Difference Estimators of Censored and Truncated Regression Models,” Journal of Econometrics, 64(1-2), 241–278.
  23. Ichimura, H. and Todd, P. E. (2007). “Implementing Nonparametric and Semiparametric Estimators,” In J. Heckman and E. Leamer (eds.) Handbook of Econometrics, Volume VI, New York: Elsevier, 5370–5468.
  24. Jing, B.-Y. and Wang, Q. (2003). “Edgeworth expansion for U-statistics under minimal conditions,” Annals of Statistics, 31(4), 1376–1391.
  25. Matsushita, Y. and Otsu, T. (2021). “Jackknife Empirical Likelihood: Small Bandwidth, Sparse Network and High-Dimensional Asymptotics,” Biometrika, 108(3), 661–674.
  26. Newey, W. K. (1994). “The Asymptotic Variance of Semiparametric Estimators,” Econometrica, 62(6), 1349–1382.
  27. Newey, W. K., Hsieh, F., and Robins, J. M. (2004). “Twicing Kernels and a Small Bias Property of Semiparametric Estimators,” Econometrica, 72(3), 947–962.
  28. Newey, W. K. and McFadden, D. L. (1994). “Large Sample Estimation and Hypothesis Testing,” In R. F. Engle and D. L. McFadden (eds.) Handbook of Econometrics, Volume IV, New York: Elsevier, 2111–2245.
  29. Nishiyama, Y. and Robinson, P. M. (2000). “Edgeworth Expansions for Semiparametric Averaged Derivatives,” Econometrica, 68(4), 931–979.
  30. Nishiyama, Y. and Robinson, P. M. (2001). “Studentization in Edgeworth Expansions for Estimates of Semiparametric Index Models,” In C. Hsiao, K. Morimune, and J. L. Powell (eds.) Nonlinear Statistical Modeling: Essays in Honor of Takeshi Amemiya, New York: Cambridge University Press, 197–240.
  31. Nishiyama, Y. and Robinson, P. M. (2005). “The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives,” Econometrica, 73(3), 197–240.
  32. de la Peña, V. H. and Montgomery-Smith, S. J. (1995). “Decoupling Inequalities for the Tail Probabilities of Multivariate U-statistics,” Annals of Probability, 23(2), 806–816.
  33. Powell, J. L. (1994). “Estimation of Semiparametric Models,” In R. F. Engle and D. L. McFadden (eds.) Handbook of Econometrics, Volume IV, New York: Elsevier, 2443–2521.
  34. Powell, J. L. (2017). “Identification and Asymptotic Approximations: Three Examples of Progress in Econometric Theory,” Journal of Economic Perspectives, 31(2), 107–124.
  35. Powell, J. L., Stock, J. H., and Stoker, T. M. (1989). “Semiparametric Estimation of Index Coefficients,” Econometrica, 57(6), 1403–1430.
  36. Powell, J. L. and Stoker, T. M. (1996). “Optimal Bandwidth Choice for Density-Weighted Averages,” Journal of Econometrics, 75(2), 291–316.
  37. Robinson, P. M. (1995). “The Normal Approximation for Semiparametric Averaged Derivatives,” Econometrica, 63(3), 667–680.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com