Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decreasing behavior of the depth functions of edge ideals (2212.14792v2)

Published 30 Dec 2022 in math.AC and math.CO

Abstract: Let $I$ be the edge ideal of a connected non-bipartite graph and $R$ the base polynomial ring. Then $\operatorname{depth} R/I \ge 1$ and $\operatorname{depth} R/It = 0$ for $t \gg 1$. We give combinatorial conditions for $\operatorname{depth} R/It = 1$ for some $t$ in between and show that the depth function is non-increasing thereafter. Especially, the depth function quickly decreases to 0 after reaching 1. We show that if $\operatorname{depth} R/I = 1$ then $\operatorname{depth} R/I2 = 0$ and if $\operatorname{depth} R/I2 = 1$ then $\operatorname{depth} R/I5 = 0$. Other similar results suggest that if $\operatorname{depth} R/It = 1$ then $\operatorname{depth} R/I{t+3} = 0$. This a surprising phenomenon because the depth of a power can determine a smaller depth of another power. Furthermore, we are able to give a simple combinatorial criterion for $\operatorname{depth} R/I{(t)} = 1$ for $t \gg 1$ and show that the condition $\operatorname{depth} R/I{(t)} = 1$ is persistent, where $I{(t)}$ denotes the $t$-th symbolic powers of $I$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.