Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint User Association and Bandwidth Allocation in Semantic Communication Networks (2212.14142v5)

Published 29 Dec 2022 in eess.SY, cs.IT, cs.SY, and math.IT

Abstract: Semantic communication (SemCom) has recently been considered a promising solution to guarantee high resource utilization and transmission reliability for future wireless networks. Nevertheless, the unique demand for background knowledge matching makes it challenging to achieve efficient wireless resource management for multiple users in SemCom-enabled networks (SC-Nets). To this end, this paper investigates SemCom from a networking perspective, where two fundamental problems of user association (UA) and bandwidth allocation (BA) are systematically addressed in the SC-Net. First, considering varying knowledge matching states between mobile users and associated base stations, we identify two general SC-Net scenarios, namely perfect knowledge matching-based SC-Net and imperfect knowledge matching-based SC-Net. Afterward, for each SC-Net scenario, we describe its distinctive semantic channel model from the semantic information theory perspective, whereby a concept of bit-rate-to-message-rate transformation is developed along with a new semantics-level metric, namely system throughput in message (STM), to measure the overall network performance. In this way, we then formulate a joint STM-maximization problem of UA and BA for each SC-Net scenario, followed by a corresponding optimal solution proposed. Numerical results in both scenarios demonstrate significant superiority and reliability of our solutions in the STM performance compared with two benchmarks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. L. Xia, Y. Sun, X. Li, G. Feng, and M. A. Imran, “Wireless resource management in intelligent semantic communication networks,” in IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2022, pp. 1–6.
  2. W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Network, vol. 34, no. 3, pp. 134–142, 2019.
  3. X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic network virtualization and pervasive network intelligence for 6G,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 1–30, 2021.
  4. W. Weaver, “Recent contributions to the mathematical theory of communication,” ETC: A Review of General Semantics, pp. 261–281, 1953.
  5. E. C. Strinati and S. Barbarossa, “6G networks: Beyond Shannon towards semantic and goal-oriented communications,” Computer Networks, vol. 190, p. 107930, 2021.
  6. J. Bao, P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and J. A. Hendler, “Towards a theory of semantic communication,” in 2011 IEEE Network Science Workshop. IEEE, 2011, pp. 110–117.
  7. X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications: Overview, open issues, and future research directions,” IEEE Wireless Communications, pp. 1–10, 2022.
  8. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2021.
  9. H. Xie and Z. Qin, “A lite distributed semantic communication system for Internet of Things,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 142–153, 2020.
  10. Z. Weng and Z. Qin, “Semantic communication systems for speech transmission,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp. 2434–2444, 2021.
  11. L. Xia, Y. Sun, C. Liang, D. Feng, R. Cheng, Y. Yang, and M. A. Imran, “WiserVR: Semantic communication enabled wireless virtual reality delivery,” IEEE Wireless Communications, vol. 30, no. 2, pp. 32–39, 2023.
  12. P. Basu, J. Bao, M. Dean, and J. Hendler, “Preserving quality of information by using semantic relationships,” Pervasive and Mobile Computing, vol. 11, pp. 188–202, 2014.
  13. R. Carnap and Y. Bar-Hillel, “An outline of a theory of semantic information,” 1952.
  14. J. Liu, S. Shao, W. Zhang, and H. V. Poor, “An indirect rate-distortion characterization for semantic sources: General model and the case of Gaussian observation,” IEEE Transactions on Communications, vol. 70, no. 9, pp. 5946–5959, 2022.
  15. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.
  16. Y. Xu, G. Gui, H. Gacanin, and F. Adachi, “A survey on resource allocation for 5G heterogeneous networks: Current research, future trends and challenges,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 668–695, 2021.
  17. Graph-based Knowledge Representation: Computational Foundations of Conceptual Graphs. Springer Science & Business Media, 2008.
  18. G. Shi, Y. Xiao, Y. Li, and X. Xie, “From semantic communication to semantic-aware networking: Model, architecture, and open problems,” IEEE Communications Magazine, vol. 59, no. 8, pp. 44–50, 2021.
  19. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  20. H. Fischer, A History of the Central Limit Theorem: From Classical to Modern Probability Theory. Springer, 2011.
  21. S. H. Low and D. E. Lapsley, “Optimization flow control. I. Basic algorithm and convergence,” IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 861–874, 1999.
  22. Convex Optimization. Cambridge University Press, 2004.
  23. N. Wang, E. Hossain, and V. K. Bhargava, “Joint downlink cell association and bandwidth allocation for wireless backhauling in two-tier HetNets with large-scale antenna arrays,” IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3251–3268, 2016.
  24. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2909–2913, 2016.
  25. S. Kataoka, “A stochastic programming model,” Econometrica: Journal of the Econometric Society, pp. 181–196, 1963.
  26. A. Charnes and W. W. Cooper, “Chance-constrained programming,” Management Science, vol. 6, no. 1, pp. 73–79, 1959.
  27. A. Prékopa, Stochastic Programming, vol. 324. Springer Science & Business Media, 2013.
  28. F. A. Potra and S. J. Wright, “Interior-point methods,” Journal of Computational and Applied Mathematics, vol. 124, no. 1-2, pp. 281–302, 2000.
  29. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. SIAM, 1990.
  30. H. Boostanimehr and V. K. Bhargava, “Unified and distributed QoS-driven cell association algorithms in heterogeneous networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 3, pp. 1650–1662, 2014.
  31. in MT Summit, vol. 5. Citeseer, 2005, pp. 79–86.
  32. P. He, L. Zhao, S. Zhou, and Z. Niu, “Water-filling: A geometric approach and its application to solve generalized radio resource allocation problems,” IEEE transactions on Wireless Communications, vol. 12, no. 7, pp. 3637–3647, 2013.
  33. Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews, “User association for load balancing in heterogeneous cellular networks,” IEEE transactions on Wireless Communications, vol. 12, no. 6, pp. 2706–2716, 2013.
  34. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method for automatic evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 2002, pp. 311–318.
Citations (16)

Summary

We haven't generated a summary for this paper yet.