The matrix equation $aX^m+bY^n=cI$ over $M_2(\mathbb{Z})$ (2212.14139v1)
Abstract: Let $\mathbb{N}$ be the set of all positive integers and let $a,\, b,\, c$ be nonzero integers such that $\gcd\left(a,\, b,\, c\right)=1$. In this paper, we prove the following three results: (1) the solvability of the matrix equation $aXm+bYn=cI,\,X,\,Y\in M_2(\mathbb{Z}),\, m,\, n\in\mathbb{N}$ can be reduced to the solvability of the corresponding Diophantine equation if $XY\neq YX$ and the solvability of the equation $axm+byn=c,\, m,\, n\in\mathbb{N}$ in quadratic fields if $XY=YX$; (2) we determine all non-commutative solutions of the matrix equation $Xn+Yn=cnI,\,X,\,Y\in M_2(\mathbb{Z}),\,n\in\mathbb{N},\,n\geq3$, and the solvability of this matrix equation can be reduced to the solvability of the equation $xn+yn=cn,\, n\in\mathbb{N},\,n\geq3$ in quadratic fields if $XY=YX$; (3) we determine all solutions of the matrix equation $aX2+bY2=cI,\,X,\,Y\in M_2(\mathbb{Z})$.