Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond the Golden Ratio for Variational Inequality Algorithms (2212.13955v1)

Published 28 Dec 2022 in math.OC, cs.LG, and stat.ML

Abstract: We improve the understanding of the $\textit{golden ratio algorithm}$, which solves monotone variational inequalities (VI) and convex-concave min-max problems via the distinctive feature of adapting the step sizes to the local Lipschitz constants. Adaptive step sizes not only eliminate the need to pick hyperparameters, but they also remove the necessity of global Lipschitz continuity and can increase from one iteration to the next. We first establish the equivalence of this algorithm with popular VI methods such as reflected gradient, Popov or optimistic gradient descent-ascent in the unconstrained case with constant step sizes. We then move on to the constrained setting and introduce a new analysis that allows to use larger step sizes, to complete the bridge between the golden ratio algorithm and the existing algorithms in the literature. Doing so, we actually eliminate the link between the golden ratio $\frac{1+\sqrt{5}}{2}$ and the algorithm. Moreover, we improve the adaptive version of the algorithm, first by removing the maximum step size hyperparameter (an artifact from the analysis) to improve the complexity bound, and second by adjusting it to nonmonotone problems with weak Minty solutions, with superior empirical performance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.