Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singing Voice Synthesis Based on a Musical Note Position-Aware Attention Mechanism (2212.13703v2)

Published 28 Dec 2022 in eess.AS, cs.LG, cs.SD, and eess.SP

Abstract: This paper proposes a novel sequence-to-sequence (seq2seq) model with a musical note position-aware attention mechanism for singing voice synthesis (SVS). A seq2seq modeling approach that can simultaneously perform acoustic and temporal modeling is attractive. However, due to the difficulty of the temporal modeling of singing voices, many recent SVS systems with an encoder-decoder-based model still rely on explicitly on duration information generated by additional modules. Although some studies perform simultaneous modeling using seq2seq models with an attention mechanism, they have insufficient robustness against temporal modeling. The proposed attention mechanism is designed to estimate the attention weights by considering the rhythm given by the musical score. Furthermore, several techniques are also introduced to improve the modeling performance of the singing voice. Experimental results indicated that the proposed model is effective in terms of both naturalness and robustness of timing.

Citations (2)

Summary

We haven't generated a summary for this paper yet.