Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Message Passing Algorithm for Downlink FDD Massive MIMO-OFDM Channel Estimation (2212.13407v2)

Published 27 Dec 2022 in cs.IT and math.IT

Abstract: The design of message passing (MP) algorithms on factor graphs is an effective manner to implement channel estimation (CE) in wireless communication systems, which performance can be further improved by exploiting prior probability models that accurately match the channel characteristics. In this work, we study the CE problem in a downlink massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. As the prior probability, we propose the Markov chain two-state Gaussian mixture with large variance differences (TSGM-LVD) model to exploit the structured sparsity in the angle-frequency domain of the channel. Existing single and combined MP rules cannot deal with the message computation of the proposed probability model. To overcome this issue, we present a general method to derive the hybrid message passing (HMP) rule, which allows the calculation of messages described by mixed linear and non-linear functions. Accordingly, we design the HMP-TSGM-LVD algorithm under the structured turbo framework (STF). Simulation results demonstrate that the proposed algorithm converges faster and obtains better and more stable performance than its counterparts. In particular, the gain of the proposed approach is maximum (3 dB) in the high signal-to-noise ratio regime, while benchmark approaches experience oscillating behavior due to the improper prior model characterization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.