Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Modeling Bivariate Left Censored Data using Reversed Hazard Rates (2212.13383v1)

Published 27 Dec 2022 in stat.ME

Abstract: When the observations are not quantified and are known to be less than a threshold value, the concept of left censoring needs to be included in the analysis of such datasets. In many real multi component lifetime systems left censored data is very common. The usual assumption that components which are part of a system, work independently seems not appropriate in a number of applications. For instance it is more realistic to acknowledge that the working status of a component affects the remaining components. When you have left-censored data, it is more meaningful to use the reversed hazard rate, proposed as a dual to the hazard rate. In this paper, we propose a model for left-censored bivariate data incorporating the dependence enjoyed among the components, based on a dynamic bivariate vector reversed hazard rate proposed in Gurler (1996). The properties of the proposed model is studied. The maximum likelihood method of estimation is shown to work well for moderately large samples. The Bayesian approach to the estimation of parameters is also presented. The complexity of the likelihood function is handled through the Metropolis - Hastings algorithm. This is executed with the MH adaptive package in r. Different interval estimation techniques of the parameters are also considered. Applications of this model is demonstrated by illustrating the usefulness of the model in analyzing real data.

Summary

We haven't generated a summary for this paper yet.