Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On phase at a resonance in slow-fast Hamiltonian systems (2212.13293v1)

Published 26 Dec 2022 in math.DS

Abstract: We consider a slow-fast Hamiltonian system with one fast angular variable (a fast phase) whose frequency vanishes on some surface in the space of slow variables (a resonant surface). Systems of such form appear in the study of dynamics of charged particles in inhomogeneous magnetic field under influence of a high-frequency electrostatic waves. Trajectories of the averaged over the fast phase system cross the resonant surface. The fast phase makes $\sim \frac {1}{\varepsilon}$ turns before arrival to the resonant surface ($\varepsilon$ is a small parameter of the problem). An asymptotic formula for the value of the phase at the arrival to the resonance was derived earlier in the context of study of charged particle dynamics on the basis of heuristic considerations without any estimates of its accuracy. We provide a rigorous derivation of this formula and prove that its accuracy is $O(\sqrt \varepsilon)$ (up to a logarithmic correction). Numerics indicate that this estimate for the accuracy is optimal.

Summary

We haven't generated a summary for this paper yet.