Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Complex Knowledge Base Question Answering via Question-to-Action and Question-to-Question Alignment (2212.13036v1)

Published 26 Dec 2022 in cs.CL and cs.AI

Abstract: Complex knowledge base question answering can be achieved by converting questions into sequences of predefined actions. However, there is a significant semantic and structural gap between natural language and action sequences, which makes this conversion difficult. In this paper, we introduce an alignment-enhanced complex question answering framework, called ALCQA, which mitigates this gap through question-to-action alignment and question-to-question alignment. We train a question rewriting model to align the question and each action, and utilize a pretrained LLM to implicitly align the question and KG artifacts. Moreover, considering that similar questions correspond to similar action sequences, we retrieve top-k similar question-answer pairs at the inference stage through question-to-question alignment and propose a novel reward-guided action sequence selection strategy to select from candidate action sequences. We conduct experiments on CQA and WQSP datasets, and the results show that our approach outperforms state-of-the-art methods and obtains a 9.88\% improvements in the F1 metric on CQA dataset. Our source code is available at https://github.com/TTTTTTTTy/ALCQA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yechun Tang (2 papers)
  2. Xiaoxia Cheng (4 papers)
  3. Weiming Lu (54 papers)
Citations (5)