Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational Complexity of Minimal Trap Spaces in Boolean Networks (2212.12756v2)

Published 24 Dec 2022 in cs.DM, cs.CC, and math.DS

Abstract: A Boolean network (BN) is a discrete dynamical system defined by a Boolean function that maps to the domain itself. A trap space of a BN is a generalization of a fixed point, which is defined as the sub-hypercubes closed by the function of the BN. A trap space is minimal if it does not contain any smaller trap space. Minimal trap spaces have applications for the analysis of attractors of BNs with various update modes. This paper establishes the computational complexity results of three decision problems related to minimal trap spaces: the decision of the trap space property of a sub-hypercube, the decision of its minimality, and the decision of the membership of a given configuration to a minimal trap space. Under several cases on Boolean function representations, we investigate the computational complexity of each problem. In the general case, we demonstrate that the trap space property is coNP-complete, and the minimality and the membership properties are $\Pi_2{\text P}$-complete. The complexities drop by one level in the polynomial hierarchy whenever the local functions of the BN are either unate, or are represented using truth-tables, binary decision diagrams, or double DNFs (Petri net encoding): the trap space property can be decided in a polynomial time, whereas deciding the minimality and the membership are coNP- complete. When the BN is given as its functional graph, all these problems are in P.

Citations (12)

Summary

We haven't generated a summary for this paper yet.