Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sárközy's Theorem in Various Finite Field Settings (2212.12754v2)

Published 24 Dec 2022 in math.NT and math.CO

Abstract: In this paper, we strengthen a result by Green about an analogue of Sarkozy's theorem in the setting of polynomial rings $\mathbb{F}_q[x]$. In the integer setting, for a given polynomial $F \in \mathbb{Z}[x]$ with constant term zero, (a generalization of) Sarkozy's theorem gives an upper bound on the maximum size of a subset $A \subset {1, \ldots, n }$ that does not contain distinct $a_1,a_2 \in A$ satisfying $a_1 - a_2 = F(b)$ for some $ b \in \mathbb{Z}$. Green proved an analogous result with much stronger bounds in the setting of subsets $A \subset \mathbb{F}_q[x]$ of the polynomial ring $\mathbb{F}_q[x]$, but required the additional condition that the number of roots of the polynomial $F \in \mathbb{F}_q[x]$ is coprime to $q$. We generalize Green's result, removing this condition. As an application, we also obtain a version of Sarkozy's theorem with similarly strong bounds for subsets $A \subset \mathbb{F}_q$ for $q = pn$ for a fixed prime $p$ and large $n$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. A new upper bound for sets with no square differences. Compos. Math., 158(8):1777–1798, 2022.
  2. Progression-free sets in ℤ4nsubscriptsuperscriptℤ𝑛4\mathbb{Z}^{n}_{4}blackboard_Z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT are exponentially small. Ann. of Math. (2), 185(1):331–337, 2017.
  3. On large subsets of 𝔽qnsubscriptsuperscript𝔽𝑛𝑞\mathbb{F}^{n}_{q}blackboard_F start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT with no three-term arithmetic progression. Ann. of Math. (2), 185(1):339–343, 2017.
  4. Ben Green. Sarkozy’s theorem in function fields. arXiv prepint, arXiv:1605.07263v4, 2017.
  5. T. Kamae and M. Mendès France. van der Corput’s difference theorem. Israel J. Math., 31(3-4):335–342, 1978.
  6. On sets of polynomials whose difference set contains no squares. Acta Arith., 161(2):127–143, 2013.
  7. Sarah Peluse. Three-term polynomial progressions in subsets of finite fields. Israel J. Math., 228(1):379–405, 2018.
  8. Sarah Peluse. On the polynomial Szemerédi theorem in finite fields. Duke Math. J., 168(5):749–774, 2019.
  9. On sets of natural numbers whose difference set contains no squares. J. London Math. Soc. (2), 37(2):219–231, 1988.
  10. Alex Rice. A maximal extension of the best-known bounds for the Furstenberg-Sárközy theorem. Acta Arith., 187(1):1–41, 2019.
  11. A. Sárközy. On difference sets of sequences of integers. III. Acta Math. Acad. Sci. Hungar., 31(3-4):355–386, 1978.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com