Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visualizing Information Bottleneck through Variational Inference (2212.12667v1)

Published 24 Dec 2022 in cs.LG

Abstract: The Information Bottleneck theory provides a theoretical and computational framework for finding approximate minimum sufficient statistics. Analysis of the Stochastic Gradient Descent (SGD) training of a neural network on a toy problem has shown the existence of two phases, fitting and compression. In this work, we analyze the SGD training process of a Deep Neural Network on MNIST classification and confirm the existence of two phases of SGD training. We also propose a setup for estimating the mutual information for a Deep Neural Network through Variational Inference.

Summary

We haven't generated a summary for this paper yet.