Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed and multipoint finite element methods for rotation-based poroelasticity (2212.12448v1)

Published 23 Dec 2022 in math.NA and cs.NA

Abstract: This work proposes a mixed finite element method for the Biot poroelasticity equations that employs the lowest-order Raviart-Thomas finite element space for the solid displacement and piecewise constants for the fluid pressure. The method is based on the formulation of linearized elasticity as a weighted vector Laplace problem. By introducing the solid rotation and fluid flux as auxiliary variables, we form a four-field formulation of the Biot system, which is discretized using conforming mixed finite element spaces. The auxiliary variables are subsequently removed from the system in a local hybridization technique to obtain a multipoint rotation-flux mixed finite element method. Stability and convergence of the four-field and multipoint mixed finite element methods are shown in terms of weighted norms, which additionally leads to parameter-robust preconditioners. Numerical experiments confirm the theoretical results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.