Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Unfolding-based Weighted Averaging for Federated Learning in Heterogeneous Environments (2212.12191v2)

Published 23 Dec 2022 in cs.LG and eess.SP

Abstract: Federated learning is a collaborative model training method that iterates model updates by multiple clients and aggregation of the updates by a central server. Device and statistical heterogeneity of participating clients cause significant performance degradation so that an appropriate aggregation weight should be assigned to each client in the aggregation phase of the server. To adjust the aggregation weights, this paper employs deep unfolding, which is known as the parameter tuning method that leverages both learning capability using training data like deep learning and domain knowledge. This enables us to directly incorporate the heterogeneity of the environment of interest into the tuning of the aggregation weights. The proposed approach can be combined with various federated learning algorithms. The results of numerical experiments indicate that a higher test accuracy for unknown class-balanced data can be obtained with the proposed method than that with conventional heuristic weighting methods. The proposed method can handle large-scale learning models with the aid of pretrained models such that it can perform practical real-world tasks. Convergence rate of federated learning algorithms with the proposed method is also provided in this paper.

Summary

We haven't generated a summary for this paper yet.