Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Look Around! A Neighbor Relation Graph Learning Framework for Real Estate Appraisal (2212.12190v1)

Published 23 Dec 2022 in cs.LG

Abstract: Real estate appraisal is a crucial issue for urban applications, which aims to value the properties on the market. Traditional methods perform appraisal based on the domain knowledge, but suffer from the efforts of hand-crafted design. Recently, several methods have been developed to automatize the valuation process by taking the property trading transaction into account when estimating the property value. However, existing methods only consider the real estate itself, ignoring the relation between the properties. Moreover, naively aggregating the information of neighbors fails to model the relationships between the transactions. To tackle these limitations, we propose a novel Neighbor Relation Graph Learning Framework (ReGram) by incorporating the relation between target transaction and surrounding neighbors with the attention mechanism. To model the influence between communities, we integrate the environmental information and the past price of each transaction from other communities. Moreover, since the target transactions in different regions share some similarities and differences of characteristics, we introduce a dynamic adapter to model the different distributions of the target transactions based on the input-related kernel weights. Extensive experiments on the real-world dataset with various scenarios demonstrate that ReGram robustly outperforms the state-of-the-art methods. Furthermore, comprehensive ablation studies were conducted to examine the effectiveness of each component in ReGram.

Citations (4)

Summary

We haven't generated a summary for this paper yet.