Dissipation as a resource for Quantum Reservoir Computing (2212.12078v2)
Abstract: Dissipation induced by interactions with an external environment typically hinders the performance of quantum computation, but in some cases can be turned out as a useful resource. We show the potential enhancement induced by dissipation in the field of quantum reservoir computing introducing tunable local losses in spin network models. Our approach based on continuous dissipation is able not only to reproduce the dynamics of previous proposals of quantum reservoir computing, based on discontinuous erasing maps but also to enhance their performance. Control of the damping rates is shown to boost popular machine learning temporal tasks as the capability to linearly and non-linearly process the input history and to forecast chaotic series. Finally, we formally prove that, under non-restrictive conditions, our dissipative models form a universal class for reservoir computing. It means that considering our approach, it is possible to approximate any fading memory map with arbitrary precision.
- Engineering Sciences and Medicine “Quantum Computing: Progress and Prospects” Washington, DC: The National Academies Press, 2019 DOI: 10.17226/25196
- Ivan H. Deutsch “Harnessing the Power of the Second Quantum Revolution” In PRX Quantum 1 American Physical Society, 2020, pp. 020101 DOI: 10.1103/PRXQuantum.1.020101
- “Quantum communication” In Nature Photonics 1.3, 2007, pp. 165–171 DOI: 10.1038/nphoton.2007.22
- C. L. Degen, F. Reinhard and P. Cappellaro “Quantum sensing” In Rev. Mod. Phys. 89 American Physical Society, 2017, pp. 035002 DOI: 10.1103/RevModPhys.89.035002
- “Advances in quantum cryptography” In Adv. Opt. Photon. 12.4 Optica Publishing Group, 2020, pp. 1012–1236 DOI: 10.1364/AOP.361502
- Aram W. Harrow and Ashley Montanaro “Quantum computational supremacy” In Nature 549.7671, 2017, pp. 203–209 DOI: 10.1038/nature23458
- Peter W. Shor “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer” In SIAM J. Comput. 26.5 USA: Society for IndustrialApplied Mathematics, 1997, pp. 1484–1509 DOI: 10.1137/S0097539795293172
- Lov K Grover “A fast quantum mechanical algorithm for database search” In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996, pp. 212–219 DOI: 10.1145/237814.237866
- “Rapid solution of problems by quantum computation” In Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 439.1907 The Royal Society London, 1992, pp. 553–558 DOI: 10.1098/rspa.1992.0167
- “Quantum complexity theory” In SIAM Journal on computing 26.5 SIAM, 1997, pp. 1411–1473 DOI: 10.1137/S0097539796300921
- “Quantum chemistry in the age of quantum computing” In Chemical reviews 119.19 ACS Publications, 2019, pp. 10856–10915 DOI: 10.1021/acs.chemrev.8b00803
- Roman Orus, Samuel Mugel and Enrique Lizaso “Quantum computing for finance: Overview and prospects” In Reviews in Physics 4 Elsevier, 2019, pp. 100028 DOI: https://doi.org/10.1016/j.revip.2019.100028
- “Option pricing using quantum computers” In Quantum 4 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2020, pp. 291 DOI: https://doi.org/10.22331/q-2020-07-06-291
- “Quantum machine learning” In Nature 549.7671 Nature Publishing Group, 2017, pp. 195–202 DOI: 10.1038/nature23474
- John Preskill “Quantum Computing in the NISQ era and beyond” In Quantum 2 Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften, 2018, pp. 79 DOI: 10.22331/q-2018-08-06-79
- “Noisy intermediate-scale quantum algorithms” In Reviews of Modern Physics 94.1 APS, 2022, pp. 015004 DOI: 10.1103/RevModPhys.94.015004
- Frank Verstraete, Michael M Wolf and J Ignacio Cirac “Quantum computation and quantum-state engineering driven by dissipation” In Nature physics 5.9 Nature Publishing Group, 2009, pp. 633–636 DOI: 10.1038/nphys1342
- Fernando Pastawski, Lucas Clemente and Juan Ignacio Cirac “Quantum memories based on engineered dissipation” In Physical Review A 83.1 APS, 2011, pp. 012304 DOI: 10.1103/PhysRevA.83.012304
- Christiane P Koch “Controlling open quantum systems: tools, achievements, and limitations” In Journal of Physics: Condensed Matter 28.21 IOP Publishing, 2016, pp. 213001 DOI: 10.1088/0953-8984/28/21/213001
- “Quantum thermodynamics” In Contemporary Physics 57.4 Taylor & Francis, 2016, pp. 545–579 DOI: 10.1080/00107514.2016.1201896
- “Quantum thermodynamics under continuous monitoring: A general framework” In AVS Quantum Science 4.2, 2022, pp. 025302 DOI: 10.1116/5.0079886
- Susana F Huelga and Martin B Plenio “Vibrations, quanta and biology” In Contemporary Physics 54.4 Taylor & Francis, 2013, pp. 181–207 DOI: 10.1080/00405000.2013.829687
- “Synchronization, quantum correlations and entanglement in oscillator networks” In Scientific Reports 3.1 Nature Publishing Group, 2013, pp. 1–6 DOI: 10.1038/srep01439
- “Unveiling noiseless clusters in complex quantum networks” In npj Quantum Information 4.1 Nature Publishing Group, 2018, pp. 1–9 DOI: 10.1038/s41534-018-0108-9
- “Opportunities in Quantum Reservoir Computing and Extreme Learning Machines” In Advanced Quantum Technologies 4.8, 2021, pp. 1–14 DOI: 10.1002/qute.202100027
- Mantas Lukoševičius, Herbert Jaeger and Benjamin Schrauwen “Reservoir computing trends” In KI-Künstliche Intelligenz 26.4 Springer, 2012, pp. 365–371 DOI: 10.1007/s13218-012-0204-5
- Wolfgang Maass, Thomas Natschläger and Henry Markram “Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations” In Neural Computation 14.11, 2002, pp. 2531–2560 DOI: 10.1162/089976602760407955
- Herbert Jaeger “The “echo state” approach to analysing and training recurrent neural networks-with an erratum note” In Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148.34 Bonn, 2001, pp. 13 URL: https://www.ai.rug.nl/minds/uploads/EchoStatesTechRep.pdf
- “Recent advances in physical reservoir computing: A review” In Neural Networks 115 Elsevier, 2019, pp. 100–123 DOI: https://doi.org/10.1016/j.neunet.2019.03.005
- “Reservoir Computing” Springer, 2021 DOI: https://doi.org/10.1007/978-981-13-1687-6
- “Temporal data classification and forecasting using a memristor-based reservoir computing system” In Nature Electronics 2.10 Nature Publishing Group, 2019, pp. 480–487 DOI: 10.1038/s41928-019-0313-3
- “Neuromorphic spintronics” In Nature electronics 3.7 Nature Publishing Group, 2020, pp. 360–370 DOI: 10.1038/s41928-019-0360-9
- Guy Van Sande, Daniel Brunner and Miguel C. Soriano “Advances in photonic reservoir computing” In Nanophotonics 6.3, 2017, pp. 561–576 DOI: doi:10.1515/nanoph-2016-0132
- “Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning” In Phys. Rev. Applied 8 American Physical Society, 2017, pp. 024030 DOI: 10.1103/PhysRevApplied.8.024030
- “Boosting Computational Power through Spatial Multiplexing in Quantum Reservoir Computing” In Phys. Rev. Applied 11 American Physical Society, 2019, pp. 034021 DOI: 10.1103/PhysRevApplied.11.034021
- Jiayin Chen and Hendra I. Nurdin “Learning nonlinear input–output maps with dissipative quantum systems” In Quantum Information Processing 18.7 Springer ScienceBusiness Media LLC, 2019 DOI: 10.1007/s11128-019-2311-9
- Quoc Hoan Tran and Kohei Nakajima “Higher-order quantum reservoir computing” In arXiv preprint arXiv:2006.08999, 2020 DOI: 10.48550/ARXIV.2006.08999
- “Information processing capacity of spin-based quantum reservoir computing systems” In Cognitive Computation Springer, 2020, pp. 1–12 DOI: 10.1007/s12559-020-09772-y
- “Quantum Reservoir Computing Using Arrays of Rydberg Atoms” In PRX Quantum 3 American Physical Society, 2022, pp. 030325 DOI: 10.1103/PRXQuantum.3.030325
- “Hilbert space as a computational resource in reservoir computing” In Phys. Rev. Res. 4 American Physical Society, 2022, pp. 033007 DOI: 10.1103/PhysRevResearch.4.033007
- “Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing” In Communications Physics 4.1 Nature Publishing Group, 2021, pp. 1–11 DOI: 10.1038/s42005-021-00556-w
- “Quantum reservoir computing with a single nonlinear oscillator” In Phys. Rev. Research 3 American Physical Society, 2021, pp. 013077 DOI: 10.1103/PhysRevResearch.3.013077
- Jiayin Chen, Hendra I Nurdin and Naoki Yamamoto “Temporal information processing on noisy quantum computers” In Physical Review Applied 14.2 APS, 2020, pp. 024065 DOI: 10.1103/PhysRevApplied.14.024065
- “Natural quantum reservoir computing for temporal information processing” In Scientific Reports 12.1 Nature Publishing Group, 2022, pp. 1–15 DOI: 10.1038/s41598-022-05061-w
- “Temporal information processing induced by quantum noise” In Phys. Rev. Res. 5 American Physical Society, 2023, pp. 023057 DOI: 10.1103/PhysRevResearch.5.023057
- “Experimental photonic quantum memristor” In Nature Photonics 16.4 Nature Publishing Group, 2022, pp. 318–323 DOI: 10.1038/s41566-022-00973-5
- Gerasimos Angelatos, Saeed A. Khan and Hakan E. Türeci “Reservoir Computing Approach to Quantum State Measurement” In Phys. Rev. X 11 American Physical Society, 2021, pp. 041062 DOI: 10.1103/PhysRevX.11.041062
- “Realising and compressing quantum circuits with quantum reservoir computing” In Communications Physics 4.1 Nature Publishing Group, 2021, pp. 1–7 DOI: 10.1038/s42005-021-00606-3
- “Quantum reservoir processing” In npj Quantum Information 5 Nature Publishing Group, 2019, pp. 35 DOI: 10.1038/s41534-019-0149-8
- “Reconstructing Quantum States With Quantum Reservoir Networks” In IEEE Transactions on Neural Networks and Learning Systems 32.7 Institute of ElectricalElectronics Engineers (IEEE), 2021, pp. 3148–3155 DOI: 10.1109/tnnls.2020.3009716
- Sanjib Ghosh, Tomasz Paterek and Timothy C. H. Liew “Quantum Neuromorphic Platform for Quantum State Preparation” In Phys. Rev. Lett. 123 American Physical Society, 2019, pp. 260404 DOI: 10.1103/PhysRevLett.123.260404
- “Quantum neuromorphic approach to efficient sensing of gravity-induced entanglement” In Physical Review D 107.8 American Physical Society (APS), 2023 DOI: 10.1103/physrevd.107.086014
- Johannes Nokkala “Online quantum time series processing with random oscillator networks” In Scientific Reports 13.1 Springer ScienceBusiness Media LLC, 2023 DOI: 10.1038/s41598-023-34811-7
- “Information processing capacity of dynamical systems” In Scientific reports 2.1 Nature Publishing Group, 2012, pp. 1–7 DOI: 10.1038/srep00514
- “Time-series quantum reservoir computing with weak and projective measurements” In npj Quantum Information 9.1, 2023, pp. 16 DOI: 10.1038/s41534-023-00682-z
- “Scalable Photonic Platform for Real-Time Quantum Reservoir Computing” In Physical Review Applied 20.1 American Physical Society (APS), 2023 DOI: 10.1103/physrevapplied.20.014051
- “Tackling Sampling Noise in Physical Systems for Machine Learning Applications: Fundamental Limits and Eigentasks” In Physical Review X 13.4 American Physical Society (APS), 2023 DOI: 10.1103/physrevx.13.041020
- Izzet B Yildiz, Herbert Jaeger and Stefan J Kiebel “Re-visiting the echo state property” In Neural networks 35 Elsevier, 2012, pp. 1–9 DOI: https://doi.org/10.1016/j.neunet.2012.07.005
- Bruno Del Papa, Viola Priesemann and Jochen Triesch “Fading memory, plasticity, and criticality in recurrent networks” In The Functional Role of Critical Dynamics in Neural Systems Springer, 2019, pp. 95–115 DOI: 10.1007/978-3-030-20965-0_6
- “Separation of chaotic signals by reservoir computing” In Chaos: An Interdisciplinary Journal of Nonlinear Science 30.2, 2020, pp. 023123 DOI: 10.1063/1.5132766
- “Analytical evidence of nonlinearity in qubits and continuous-variable quantum reservoir computing” In Journal of Physics: Complexity 2.4 IOP Publishing, 2021, pp. 045008 DOI: 10.1088/2632-072x/ac340e
- “Qiskit: An Open-source Framework for Quantum Computing”, 2021 DOI: 10.5281/zenodo.2573505
- “Quantum Simulation of Dissipative Collective Effects on Noisy Quantum Computers” In PRX Quantum 4.1 American Physical Society (APS), 2023 DOI: 10.1103/prxquantum.4.010324
- “The theory of open quantum systems” Oxford University Press on Demand, 2002 DOI: 10.1093/acprof:oso/9780199213900.001.0001
- Goran Lindblad “On the generators of quantum dynamical semigroups” In Communications in Mathematical Physics 48.2 Springer, 1976, pp. 119–130 DOI: 10.1007/BF01608499
- Vittorio Gorini, Andrzej Kossakowski and Ennackal Chandy George Sudarshan “Completely positive dynamical semigroups of N-level systems” In Journal of Mathematical Physics 17.5 American Institute of Physics, 1976, pp. 821–825 DOI: 10.1063/1.522979
- “Local versus global master equation with common and separate baths: superiority of the global approach in partial secular approximation” In New Journal of Physics 21.11 IOP Publishing, 2019, pp. 113045 DOI: 10.1088/1367-2630/ab54ac
- “Echo state networks are universal” In Neural Networks 108 Elsevier, 2018, pp. 495–508 DOI: https://doi.org/10.1016/j.neunet.2018.08.025
- “Short term memory and pattern matching with simple echo state networks” In International Conference on Artificial Neural Networks, 2005, pp. 13–18 Springer DOI: https://doi.org/10.1007/11550822_3
- “Long short-term memory” In Neural computation 9.8 MIT Press, 1997, pp. 1735–1780 DOI: 10.1007/978-3-642-24797-2_4
- Gavan Lintern and Peter N Kugler “Self-organization in connectionist models: Associative memory, dissipative structures, and thermodynamic law” In Human Movement Science 10.4 Elsevier, 1991, pp. 447–483 DOI: https://doi.org/10.1016/0167-9457(91)90015-P
- “Dynamical phase transitions in quantum reservoir computing” In Physical Review Letters 127.10 APS, 2021, pp. 100502 DOI: 10.1103/PhysRevLett.127.100502
- Michael C Mackey and Leon Glass “Oscillation and chaos in physiological control systems” In Science 197.4300 American Association for the Advancement of Science, 1977, pp. 287–289 DOI: 10.1126/science.267326
- J Doyne Farmer and John J Sidorowich “Predicting chaotic time series” In Physical Review Letters 59.8 APS, 1987, pp. 845 DOI: 10.1103/PhysRevLett.59.845
- “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication” In Science 304.5667 American Association for the Advancement of Science, 2004, pp. 78–80 DOI: 10.1126/science.1091277
- “A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron” In Scientific reports 5.1 Nature Publishing Group, 2015, pp. 1–11 DOI: 10.1038/srep14945
- “Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data” In Chaos 27.12 AIP Publishing LLC, 2017, pp. 121102 DOI: 10.1063/1.5010300
- “Dicke quantum phase transition with a superfluid gas in an optical cavity” In Nature 464.7293 Springer ScienceBusiness Media LLC, 2010, pp. 1301–1306 DOI: 10.1038/nature09009
- “Nonequilibrium phase transition in a spin-1 Dicke model” In Optica 4.4 The Optical Society, 2017, pp. 424 DOI: 10.1364/optica.4.000424
- “Exploring dynamical phase transitions with cold atoms in an optical cavity” In Nature 580.7805 Springer ScienceBusiness Media LLC, 2020, pp. 602–607 DOI: 10.1038/s41586-020-2224-x
- “Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice” In Physical Review X 7.1 American Physical Society (APS), 2017 DOI: 10.1103/physrevx.7.011016
- “Generalized Dicke Nonequilibrium Dynamics in Trapped Ions” In Physical Review Letters 112.2 American Physical Society (APS), 2014 DOI: 10.1103/physrevlett.112.023603
- “An open-system quantum simulator with trapped ions” In Nature 470.7335 Springer ScienceBusiness Media LLC, 2011, pp. 486–491 DOI: 10.1038/nature09801
- R. Blatt and C. F. Roos “Quantum simulations with trapped ions” In Nature Physics 8.4 Springer ScienceBusiness Media LLC, 2012, pp. 277–284 DOI: 10.1038/nphys2252
- “Driven-Dissipative Rydberg Blockade in Optical Lattices” In Physical Review Letters 130.16 American Physical Society (APS), 2023 DOI: 10.1103/physrevlett.130.163601
- “Multicritical behavior in dissipative Ising models” In Physical Review A 95.4 American Physical Society (APS), 2017 DOI: 10.1103/physreva.95.042133
- “Phase diagram of the dissipative quantum Ising model on a square lattice” In Physical Review B 98.24 American Physical Society (APS), 2018 DOI: 10.1103/physrevb.98.241108
- “Dynamical phases and intermittency of the dissipative quantum Ising model” In Physical Review A 85.4 American Physical Society (APS), 2012 DOI: 10.1103/physreva.85.043620
- A. Bermudez, T. Schaetz and M. B. Plenio “Dissipation-Assisted Quantum Information Processing with Trapped Ions” In Physical Review Letters 110.11 American Physical Society (APS), 2013 DOI: 10.1103/physrevlett.110.110502
- Haggai Landa, Marco Schiró and Grégoire Misguich “Multistability of Driven-Dissipative Quantum Spins” In Physical Review Letters 124.4 American Physical Society (APS), 2020 DOI: 10.1103/physrevlett.124.043601
- Heike Schwager, J. Ignacio Cirac and Géza Giedke “Dissipative spin chains: Implementation with cold atoms and steady-state properties” In Physical Review A 87.2 American Physical Society (APS), 2013 DOI: 10.1103/physreva.87.022110
- Tony E. Lee and Ching-Kit Chan “Heralded Magnetism in Non-Hermitian Atomic Systems” In Physical Review X 4.4 American Physical Society (APS), 2014 DOI: 10.1103/physrevx.4.041001
- J. Ignacio Cirac and Peter Zoller “New Frontiers in Quantum Information With Atoms and Ions” In Physics Today 57.3 AIP Publishing, 2004, pp. 38–44 DOI: 10.1063/1.1712500
- Tony E. Lee, Sarang Gopalakrishnan and Mikhail D. Lukin “Unconventional Magnetism via Optical Pumping of Interacting Spin Systems” In Physical Review Letters 110.25 American Physical Society (APS), 2013 DOI: 10.1103/physrevlett.110.257204
- “Quantum neuromorphic computing” In Applied Physics Letters 117.15, 2020, pp. 150501 DOI: 10.1063/5.0020014
- “Collision Models Can Efficiently Simulate Any Multipartite Markovian Quantum Dynamics” In Physical Review Letters 126.13 American Physical Society (APS), 2021 DOI: 10.1103/physrevlett.126.130403
- “Dynamics of non-Markovian open quantum systems” In Rev. Mod. Phys. 89 American Physical Society, 2017, pp. 015001 DOI: 10.1103/RevModPhys.89.015001
- G Manjunath “Embedding information onto a dynamical system” In Nonlinearity 35.3 IOP Publishing, 2022, pp. 1131 DOI: 10.1088/1361-6544/ac4817
- Jiayin Chen “Nonlinear Convergent Dynamics for Temporal Information Processing on Novel Quantum and Classical Devices”, 2022 DOI: https://doi.org/10.26190/unsworks/24115
- Davide Nigro “On the uniqueness of the steady-state solution of the Lindblad–Gorini–Kossakowski–Sudarshan equation” In Journal of Statistical Mechanics: Theory and Experiment 2019.4 IOP Publishing, 2019, pp. 043202 DOI: 10.1088/1742-5468/ab0c1c
- “Universal Discrete-Time Reservoir Computers with Stochastic Inputs and Linear Readouts Using Non-Homogeneous State-Affine Systems” In J. Mach. Learn. Res. 19.1 JMLR.org, 2018, pp. 892–931 URL: https://dl.acm.org/doi/abs/10.5555/3291125.3291149
- “Spectral theory of Liouvillians for dissipative phase transitions” In Phys. Rev. A 98 American Physical Society, 2018, pp. 042118 DOI: 10.1103/PhysRevA.98.042118
- “LAPACK Users’ Guide” Society for IndustrialApplied Mathematics, 1999 DOI: 10.1137/1.9780898719604