On the Diophantine equations of the form $λ_1U_{n_1} + λ_2U_{n_2} +\ldots + λ_kU_{n_k} = wp_1^{z_1}p_2^{z_2} \cdots p_s^{z_s}$ (2212.11945v1)
Abstract: In this paper, we consider the Diophantine equation $\lambda_1U_{n_1}+\ldots+\lambda_kU_{n_k}=wp_1{z_1} \cdots p_s{z_s},$ where ${U_n}_{n\geq 0}$ is a fixed non-degenerate linear recurrence sequence of order greater than or equal to 2; $w$ is a fixed non-zero integer; $p_1,\dots,p_s$ are fixed, distinct prime numbers; $\lambda_1,\dots,\lambda_k$ are strictly positive integers; and $n_1,\dots,n_k,z_1,\dots,z_s$ are non-negative integer unknowns. We prove the existence of an effectively computable upper-bound on the solutions $(n_1,\dots,n_k,z_1,\dots,z_s)$. In our proof, we use lower bounds for linear forms in logarithms, extending the work of Pink and Ziegler (2016), Mazumdar and Rout (2019), Meher and Rout (2017), and Ziegler (2019).