Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Green's function estimates for a 2d singularly perturbed convection-diffusion problem: extended analysis (2212.11916v1)

Published 22 Dec 2022 in math.AP, cs.NA, and math.NA

Abstract: This paper presents an extended version of the article [Franz, S., Kopteva, N.: J. Differential Equations, 252 (2012)]. The main improvement compared to the latter is in that here we additionally estimate the mixed second-order derivative of the Green's function. The case of Neumann conditions along the characteristic boundaries is also addressed. A singularly perturbed convection-diffusion problem is posed in the unit square with a horizontal convective direction. Its solutions exhibit parabolic and exponential boundary layers. Sharp estimates of the Green's function and its first- and second-order derivatives are derived in the $L_1$ norm. The dependence of these estimates on the small diffusion parameter is shown explicitly. The obtained estimates will be used in a forthcoming numerical analysis of the considered problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.