Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations (2212.11737v2)

Published 22 Dec 2022 in cs.LG, cs.HC, and stat.ML

Abstract: Machine learning (ML) models are nowadays used in complex applications in various domains, such as medicine, bioinformatics, and other sciences. Due to their black box nature, however, it may sometimes be hard to understand and trust the results they provide. This has increased the demand for reliable visualization tools related to enhancing trust in ML models, which has become a prominent topic of research in the visualization community over the past decades. To provide an overview and present the frontiers of current research on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in ML models with the use of interactive visualization. We define and describe the background of the topic, introduce a categorization for visualization techniques that aim to accomplish this goal, and discuss insights and opportunities for future research directions. Among our contributions is a categorization of trust against different facets of interactive ML, expanded and improved from previous research. Our results are investigated from different analytical perspectives: (a) providing a statistical overview, (b) summarizing key findings, (c) performing topic analyses, and (d) exploring the data sets used in the individual papers, all with the support of an interactive web-based survey browser. We intend this survey to be beneficial for visualization researchers whose interests involve making ML models more trustworthy, as well as researchers and practitioners from other disciplines in their search for effective visualization techniques suitable for solving their tasks with confidence and conveying meaning to their data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (455)
  1. Alimoğlu F., Alpaydın E.: Combining multiple representations and classifiers for pen-based handwritten digit recognition. In Proceedings of the Fourth International Conference on Document Analysis and Recognition (1997), vol. 2 of ICDAR ’97, IEEE, pp. 637–640. doi:10.1109/ICDAR.1997.620583.
  2. ClustMe: A visual quality measure for ranking monochrome scatterplots based on cluster patterns. Computer Graphics Forum 38, 3 (June 2019), 225–236. doi:10.1111/cgf.13684.
  3. ModelTracker: Redesigning performance analysis tools for machine learning. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (2015), CHI ’15, ACM, pp. 337–346. doi:10.1145/2702123.2702509.
  4. Power to the people: The role of humans in interactive machine learning. AI Magazine 35, 4 (Dec. 2014), 105–120. doi:10.1609/aimag.v35i4.2513.
  5. Perception-based visual quality measures. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2011), VAST ’11, IEEE, pp. 13–20. doi:10.1109/VAST.2011.6102437.
  6. Discovering interpretable representations for both deep generative and discriminative models. In Proceedings of the 35th International Conference on Machine Learning (2018), vol. 80 of Proceedings of Machine Learning Research, PMLR, pp. 50–59. URL: http://proceedings.mlr.press/v80/adel18a.html.
  7. Visual methods for analyzing probabilistic classification data. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 1703–1712. doi:10.1109/TVCG.2014.2346660.
  8. Do convolutional neural networks learn class hierarchy? IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 152–162. doi:10.1109/TVCG.2017.2744683.
  9. Alpaydın E., Kaynak C.: Cascaded classifiers. Kybernetika 34, 4 (July 1998), 369–374. URL: https://dml.cz/handle/10338.dmlcz/135217.
  10. Ahn Y., Lin Y.: FairSight: Visual analytics for fairness in decision making. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 1086–1095. doi:10.1109/TVCG.2019.2934262.
  11. Alvarez-Melis D., Jaakkola T. S.: On the robustness of interpretability methods. In Proceedings of the ICML Workshop on Human Interpretability in Machine Learning (2018), WHI ’18. arXiv:1806.08049.
  12. Anderson E.: The species problem in Iris. Annals of the Missouri Botanical Garden 23, 3 (Sept. 1936), 457–509. URL: http://jstor.org/stable/2394164.
  13. MIT-BIH Arrhythmia Database, 2005. Accessed January 10, 2020. URL: https://sdo.gsfc.nasa.gov/.
  14. Article 29 Data Protection Working Party: Guidelines on automated individual decision-making and profiling for the purposes of Regulation 2016/679 (WP251rev.01), Feb. 2018. Accessed January 10, 2020. URL: https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=612053.
  15. Interactive Atlas of Dermoscopy. Edra Medical Publishing and New Media, Milan, Italy, 2000. URL: https://espace.library.uq.edu.au/view/UQ:229410.
  16. Towards rapid interactive machine learning: Evaluating tradeoffs of classification without representation. In Proceedings of the 24th International Conference on Intelligent User Interfaces (2019), IUI ’19, ACM, pp. 591–602. doi:10.1145/3301275.3302280.
  17. Aupetit M.: Visualizing distortions and recovering topology in continuous projection techniques. Neurocomputing 70, 7–9 (Mar. 2007), 1304–1330. doi:10.1016/j.neucom.2006.11.018.
  18. Ahmed Z., Weaver C.: An adaptive parameter space-filling algorithm for highly interactive cluster exploration. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2012), VAST ’12, IEEE, pp. 13–22. doi:10.1109/VAST.2012.6400493.
  19. Steerable clustering for visual analysis of ecosystems. In Proceedings of the EuroVis Workshop on Visual Analytics (2011), EuroVA ’11, The Eurographics Association. doi:10.2312/PE/EuroVAST/EuroVA11/049-052.
  20. Visual analytics methods to guide diagnostics for time series model predictions. In Proceedings of the IEEE VIS Workshop on Visualization for Predictive Analytics (2014), VPA ’14. URL: http://predictive-workshop.github.io/.
  21. Integrating predictions in time series model selection. In Proceedings of the EuroVis Workshop on Visual Analytics (2015), EuroVA ’15, The Eurographics Association. doi:10.2312/eurova.20151107.
  22. FeatureInsight: Visual support for error-driven feature ideation in text classification. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2015), VAST ’15, IEEE, pp. 105–112. doi:10.1109/VAST.2015.7347637.
  23. Interactive and iterative visual clustering. Information Visualization 15, 3 (2016), 181–197. doi:10.1177/1473871615571951.
  24. Data visualization literacy: Definitions, conceptual frameworks, exercises, and assessments. Proceedings of the National Academy of Sciences 116, 6 (2019), 1857–1864. doi:10.1073/pnas.1807180116.
  25. Combining cluster and outlier analysis with visual analytics. In Proceedings of the EuroVis Workshop on Visual Analytics (2017), EuroVA ’17, The Eurographics Association. doi:10.2312/eurova.20171114.
  26. Becker K.: Identifying the gender of a voice using machine learning, 2016. Accessed January 10, 2020. URL: http://primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning/.
  27. Steering the craft: UI elements and visualizations for supporting progressive visual analytics. Computer Graphics Forum 36, 3 (June 2017), 491–502. doi:10.1111/cgf.13205.
  28. Bellman R. E.: Dynamic Programming. Dover Publications, Inc., Mineola, NY, USA, 2003.
  29. Best City Contest, 2012. Accessed January 10, 2020. URL: http://eiu2012contest.blogspot.com/.
  30. Classification and Regression Trees. The Wadsworth Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, USA, 1984. URL: https://cds.cern.ch/record/2253780.
  31. Cupid: Cluster-based exploration of geometry generators with parallel coordinates and radial trees. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 1693–1702. doi:10.1109/TVCG.2014.2346626.
  32. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Weblogs and Social Media (2009), ICWSM ’09, AAAI, pp. 361–362. URL: https://aaai.org/ocs/index.php/ICWSM/09/paper/view/154.
  33. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 7 (July 1997), 711–720. doi:10.1109/34.598228.
  34. Visual analysis of degree-of-interest functions to support selection strategies for instance labeling. In Proceedings of the EuroVis Workshop on Visual Analytics (2019), EuroVA ’19, The Eurographics Association. doi:10.2312/eurova.20191116.
  35. Comparing visual-interactive labeling with active learning: An experimental study. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 298–308. doi:10.1109/TVCG.2017.2744818.
  36. Bird S.: NLTK: The natural language toolkit. In Proceedings of the COLING/ACL — Interactive Presentation Sessions (2006), COLING-ACL ’06, ACL, pp. 69–72. doi:10.3115/1225403.1225421.
  37. Feedback-driven interactive exploration of large multidimensional data supported by visual classifier. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2014), VAST ’14, IEEE, pp. 43–52. doi:10.1109/VAST.2014.7042480.
  38. Visual analysis and dissemination of scientific literature collections with SurVis. IEEE Transactions on Visualization and Computer Graphics 22, 1 (Jan. 2016), 180–189. doi:10.1109/TVCG.2015.2467757.
  39. Bertini E., Lalanne D.: Surveying the complementary role of automatic data analysis and visualization in knowledge discovery. In Proceedings of the ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery: Integrating Automated Analysis with Interactive Exploration (2009), VAKD ’09, ACM, pp. 12–20. doi:10.1145/1562849.1562851.
  40. Dis-Function: Learning distance functions interactively. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2012), VAST ’12, IEEE, pp. 83–92. doi:10.1109/VAST.2012.6400486.
  41. Bennett K. P., Mangasarian O. L.: Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software 1, 1 (Apr. 1992), 23–34. doi:10.1080/10556789208805504.
  42. Latent Dirichlet allocation. Journal of Machine Learning Research 3 (Mar. 2003), 993–1022. URL: http://jmlr.org/papers/v3/blei03a.html.
  43. BPD Field Interrogation and Observation (FIO) dataset, 2016. Accessed January 10, 2020. URL: https://data.boston.gov/dataset/boston-police-department-fio.
  44. Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Computer Graphics Forum 30, 3 (June 2011), 911–920. doi:10.1111/j.1467-8659.2011.01940.x.
  45. Broemstrup T., Reuter N.: Molecular dynamics simulations of mixed acidic/zwitterionic phospholipid bilayers. Biophysical Journal 99, 3 (Aug. 2010), 825–833. doi:10.1016/j.bpj.2010.04.064.
  46. A principled way of assessing visualization literacy. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 1963–1972. doi:10.1109/TVCG.2014.2346984.
  47. Multimodal distributional semantics. Journal of Artificial Intelligence Research 49, 1 (Jan. 2014), 1–47. doi:10.1613/jair.4135.
  48. Assisted descriptor selection based on visual comparative data analysis. Computer Graphics Forum 30, 3 (June 2011), 891–900. doi:10.1111/j.1467-8659.2011.01938.x.
  49. Selection bias tracking and detailed subset comparison for high-dimensional data. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 429–439. doi:10.1109/TVCG.2019.2934209.
  50. Towards user-centered active learning algorithms. Computer Graphics Forum 37, 3 (June 2018), 121–132. doi:10.1111/cgf.13406.
  51. VIAL: A unified process for visual interactive labeling. The Visual Computer 34, 9 (Sept. 2018), 1189–1207. doi:10.1007/s00371-018-1500-3.
  52. LDA ensembles for interactive exploration and categorization of behaviors. IEEE Transactions on Visualization and Computer Graphics (2019). doi:10.1109/TVCG.2019.2904069.
  53. Cadaster Challenge, 2009. Accessed January 10, 2020. URL: http://www.cadaster.eu/node/67.html.
  54. Interactive labelling of a multivariate dataset for supervised machine learning using linked visualisations, clustering, and active learning. Visual Informatics 3, 1 (Mar. 2019), 9–17. Proceedings of PacificVAST 2019. doi:10.1016/j.visinf.2019.03.002.
  55. Anomaly detection: A survey. ACM Computing Surveys 41, 3 (July 2009). doi:10.1145/1541880.1541882.
  56. Click2Annotate: Automated insight externalization with rich semantics. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2010), VAST ’10, IEEE, pp. 155–162. doi:10.1109/VAST.2010.5652885.
  57. Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems 47, 4 (Nov. 2009), 547–553. Smart Business Networks: Concepts and Empirical Evidence. doi:10.1016/j.dss.2009.05.016.
  58. Concept-driven visual analytics: An exploratory study of model- and hypothesis-based reasoning with visualizations. In Proceedings of the CHI Conference on Human Factors in Computing Systems (2019), CHI ’19, ACM, pp. 68:1–68:14. doi:10.1145/3290605.3300298.
  59. DropoutSeer: Visualizing learning patterns in massive open online courses for dropout reasoning and prediction. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2016), VAST ’16, IEEE, pp. 111–120. doi:10.1109/VAST.2016.7883517.
  60. Chase M. A., Dummer G. M.: The role of sports as a social status determinant for children. Research Quarterly for Exercise and Sport 63, 4 (Dec. 1992), 418–424. doi:10.1080/02701367.1992.10608764.
  61. Cavallo M., Demiralp Ç.: Track Xplorer: A system for visual analysis of sensor-based motor activity predictions. Computer Graphics Forum 37, 3 (June 2018), 339–349. doi:10.1111/cgf.13424.
  62. Cavallo M., Demiralp Ç.: A visual interaction framework for dimensionality reduction based data exploration. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (2018), CHI ’18, ACM. doi:10.1145/3173574.3174209.
  63. Cavallo M., Demiralp Ç.: Clustrophile 2: Guided visual clustering analysis. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 267–276. doi:10.1109/TVCG.2018.2864477.
  64. Learning to extract symbolic knowledge from the World Wide Web. In Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence (1998), AAAI ’98/IAAI ’98, American Association for Artificial Intelligence, pp. 509–516. doi:10.5555/295240.295725.
  65. The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race. In Proceedings of the 26th International Conference on World Wide Web Companion (2017), WWW ’17 Companion, International World Wide Web Conferences Steering Committee, pp. 963–972. doi:10.1145/3041021.3055135.
  66. LSAView: A tool for visual exploration of latent semantic modeling. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2009), VAST ’09, IEEE, pp. 83–90. doi:10.1109/VAST.2009.5333428.
  67. FairVis: Visual analytics for discovering intersectional bias in machine learning. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2019), VAST ’19, IEEE. arXiv:1904.05419.
  68. WIT33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT: Web inventory of transcribed and translated talks. In Proceedings of the 16th Annual Conference of the European Association for Machine Translation (May 2012), EAMT ’12, EAMT, pp. 261–268. URL: http://mt-archive.info/EAMT-2012-complete.pdf.
  69. A review of guidance approaches in visual data analysis: A multifocal perspective. Computer Graphics Forum 38, 3 (2019), 861–879. doi:10.1111/cgf.13730.
  70. Visualization for classification in deep neural networks. In Proceedings of the Workshop on Visual Analytics for Deep Learning (2017), VADL ’17. URL: https://vadl2017.github.io/.
  71. VisCoDeR: A tool for visually comparing dimensionality reduction algorithms. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (Jan. 2018), ESANN ’18, Ciaco - i6doc.com, pp. 105–110. URL: https://www.elen.ucl.ac.be/esann/proceedings/papers.php?ann=2018.
  72. A user-based visual analytics workflow for exploratory model analysis. Computer Graphics Forum 38, 3 (June 2019), 185–199. doi:10.1111/cgf.13681.
  73. Reducing workload in systematic review preparation using automated citation classification. Journal of the American Medical Informatics Association 13, 2 (Mar. 2006), 206–219. doi:10.1197/jamia.M1929.
  74. The effects of example-based explanations in a machine learning interface. In Proceedings of the 24th International Conference on Intelligent User Interfaces (2019), IUI ’19, ACM, pp. 258–262. doi:10.1145/3301275.3302289.
  75. Choo J., Liu S.: Visual analytics for explainable deep learning. IEEE Computer Graphics and Applications 38, 4 (July 2018), 84–92. doi:10.1109/MCG.2018.042731661.
  76. iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2010), VAST ’10, IEEE, pp. 27–34. doi:10.1109/VAST.2010.5652443.
  77. Cortez P., Morais A.: A data mining approach to predict forest fires using meteorological data. In New Trends in Artificial Intelligence: Proceedings of the 13th Portuguese Conference on Artificial Intelligence (2007), EPIA ’07, APPIA, pp. 512–523.
  78. A survey of surveys on the use of visualization for interpreting machine learning models. Information Visualization (2020). doi:10.1177/1473871620904671.
  79. Explaining three-dimensional dimensionality reduction plots. Information Visualization 15, 2 (Apr. 2016), 154–172. doi:10.1177/1473871615600010.
  80. Cock D. D.: Ames, Iowa: Alternative to the Boston Housing Data as an end of semester regression project. Journal of Statistics Education 19, 3 (Nov. 2011). doi:10.1080/10691898.2011.11889627.
  81. Cohen L. H.: Measurement of life events. In Life Events and Psychological Functioning: Theoretical and Methodological Issues. SAGE Publications, Thousand Oaks, CA, USA, 1988, pp. 11–30.
  82. COMPAS recidivism risk score data and analysis—ProPublica, 2019. Accessed January 10, 2020. URL: https://propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis.
  83. Ablate, variate, and contemplate: Visual analytics for discovering neural architectures. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 863–873. doi:10.1109/TVCG.2019.2934261.
  84. RNNbow: Visualizing learning via backpropagation gradients in RNNs. IEEE Computer Graphics and Applications 38, 6 (Nov. 2018), 39–50. doi:10.1109/MCG.2018.2878902.
  85. Interpretation and trust: Designing model-driven visualizations for text analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2012), CHI ’12, ACM, pp. 443–452. doi:10.1145/2207676.2207738.
  86. Importance of semantic representation: Dataless classification. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008), AAAI ’08, AAAI Press. URL: https://aaai.org/Library/AAAI/2008/aaai08-132.php.
  87. Chuang J., Socher R.: Interactive visualizations for deep learning. In Proceedings of the IEEE VIS Workshop on Visualization for Predictive Analytics (2014), VPA ’14. URL: http://predictive-workshop.github.io/.
  88. Interactive visual exploration of local patterns in large scatterplot spaces. Computer Graphics Forum 37, 3 (June 2018), 99–109. doi:10.1111/cgf.13404.
  89. AnchorViz: Facilitating classifier error discovery through interactive semantic data exploration. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (2018), IUI ’18, ACM, pp. 269–280. doi:10.1145/3172944.3172950.
  90. Learning to explain: An information-theoretic perspective on model interpretation. In Proceedings of the 35th International Conference on Machine Learning (2018), vol. 80 of Proceedings of Machine Learning Research, PMLR, pp. 883–892. URL: http://proceedings.mlr.press/v80/chen18j.html.
  91. V-Awake: A visual analytics approach for correcting sleep predictions from deep learning models. Computer Graphics Forum 38, 3 (June 2019), 1–12. doi:10.1111/cgf.13667.
  92. Visual verification of cancer staging for therapy decision support. Computer Graphics Forum 36, 3 (June 2017), 109–120. doi:10.1111/cgf.13172.
  93. Descriptive mAchine Learning EXplanations (DALEX), 2020. Accessed January 10, 2020. URL: https://modeloriented.github.io/DALEX/.
  94. Defense Advanced Research Projects Agency — Explainable Artificial Intelligence (XAI) program information, 2020. Accessed January 10, 2020. URL: https://darpa.mil/program/explainable-artificial-intelligence.
  95. iLAMP: Exploring high-dimensional spacing through backward multidimensional projection. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2012), VAST ’12, IEEE, pp. 53–62. doi:10.1109/VAST.2012.6400489.
  96. BEAMES: Interactive multi-model steering, selection, and inspection for regression tasks. IEEE Computer Graphics and Applications 39, 9 (Sept. 2019). doi:10.1109/MCG.2019.2922592.
  97. ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2009), CVPR ’09, IEEE, pp. 248–255. doi:10.1109/CVPR.2009.5206848.
  98. A task-based taxonomy of cognitive biases for information visualization. IEEE Transactions on Visualization and Computer Graphics 26, 2 (Feb. 2020), 1413–1432. doi:10.1109/TVCG.2018.2872577.
  99. Dua D., Graff C.: UCI Machine Learning Repository, 2017. URL: http://archive.ics.uci.edu/ml.
  100. Sparse matrix test problems. ACM Transactions on Mathematical Software 15, 1 (Mar. 1989), 1–14. doi:10.1145/62038.62043.
  101. Dudley J. J., Kristensson P. O.: A review of user interface design for interactive machine learning. ACM Transactions on Interactive Intelligent Systems 8, 2 (June 2018), 8:1–8:37. doi:10.1145/3185517.
  102. Techniques for interpretable machine learning. Communications of the ACM 63, 1 (Jan. 2020), 68–77. doi:10.1145/3359786.
  103. Diekmann R., Preis R.: AG-Monien Graph, 1998. Accessed January 10, 2020. URL: http://cise.ufl.edu/research/sparse/matrices/AG-Monien/airfoil1_dual.html.
  104. ThreadReconstructor: Modeling reply-chains to untangle conversational text through visual analytics. Computer Graphics Forum 37, 3 (June 2018), 351–365. doi:10.1111/cgf.13425.
  105. European Parliament, Council of the European Union: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation), Apr. 2016. Accessed January 10, 2020. URL: https://eur-lex.europa.eu/eli/reg/2016/679/oj.
  106. Ein-Dor P., Feldmesser J.: Attributes of the performance of central processing units: A relative performance prediction model. Communications of the ACM 30, 4 (Apr. 1987), 308–317. doi:10.1145/32232.32234.
  107. Rolling the dice: Multidimensional visual exploration using scatterplot matrix navigation. IEEE Transactions on Visualization and Computer Graphics 14, 6 (Nov. 2008), 1539–1148. doi:10.1109/TVCG.2008.153.
  108. Visual steering and verification of mass spectrometry data factorization in air quality research. IEEE Transactions on Visualization and Computer Graphics 18, 12 (Dec. 2012), 2275–2284. doi:10.1109/TVCG.2012.280.
  109. Evans A. M., Krueger J. I.: The psychology (and economics) of trust. Social and Personality Psychology Compass 3, 6 (Dec. 2009), 1003–1017. doi:10.1111/j.1751-9004.2009.00232.x.
  110. A mobile vision system for robust multi-person tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2008), CVPR ’08, IEEE. doi:10.1109/CVPR.2008.4587581.
  111. Accessed January 10, 2020. URL: https://kaggle.com/mauryashubham/english-premier-league-players-dataset.
  112. The state of the art in integrating machine learning into visual analytics. Computer Graphics Forum 36, 8 (2017), 458–486. doi:10.1111/cgf.13092.
  113. European Social Survey (ESS), 2018. Accessed January 10, 2020. URL: https://europeansocialsurvey.org/.
  114. Evans J. D.: Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publishing, Pacific Grove, CA, USA, 1996.
  115. A nested workflow model for visual analytics design and validation. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization (2016), BELIV ’16, ACM, pp. 104–111. doi:10.1145/2993901.2993915.
  116. Feng S., Boyd-Graber J.: What can AI do for me?: Evaluating machine learning interpretations in cooperative play. In Proceedings of the 24th International Conference on Intelligent User Interfaces (2019), IUI ’19, ACM, pp. 229–239. doi:10.1145/3301275.3302265.
  117. Finding and visualizing relevant subspaces for clustering high-dimensional astronomical data using connected morphological operators. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2010), VAST ’10, IEEE, pp. 35–42. doi:10.1109/VAST.2010.5652450.
  118. Short-term memory mechanisms in neural network learning of robot navigation tasks: A case study. In Proceedings of the 6th Latin American Robotics Symposium (2009), LARS ’09, IEEE. doi:10.1109/LARS.2009.5418323.
  119. An incremental dimensionality reduction method for visualizing streaming multidimensional data. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 418–428. doi:10.1109/TVCG.2019.2934433.
  120. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (2004), CVPRW ’04, IEEE. doi:10.1109/CVPR.2004.383.
  121. Placing search in context: The concept revisited. In Proceedings of the 10th International Conference on World Wide Web (2001), WWW ’01, ACM, pp. 406–414. doi:10.1145/371920.372094.
  122. Supporting analysis of dimensionality reduction results with contrastive learning. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 45–55. doi:10.1109/TVCG.2019.2934251.
  123. GEMSe: Visualization-guided exploration of multi-channel segmentation algorithms. Computer Graphics Forum 35, 3 (June 2016), 191–200. doi:10.1111/cgf.12895.
  124. Friedman J. H.: Stochastic gradient boosting. Computational Statistics & Data Analysis 38, 4 (Feb. 2002), 367–378. doi:10.1016/S0167-9473(01)00065-2.
  125. Quality-based guidance for exploratory dimensionality reduction. Information Visualization 12, 1 (Jan. 2013), 44–64. doi:10.1177/1473871612460526.
  126. Fogg B. J., Tseng H.: The elements of computer credibility. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (1999), CHI ’99, ACM, pp. 80–87. doi:10.1145/302979.303001.
  127. Fanaee-T H., Gama J.: Event labeling combining ensemble detectors and background knowledge. Progress in Artificial Intelligence 2, 2 (June 2014), 113–127. doi:10.1007/s13748-013-0040-3.
  128. Frenay B., Verleysen M.: Classification in the presence of label noise: A survey. IEEE Transactions on Neural Networks and Learning Systems 25, 5 (May 2014), 845–869. doi:10.1109/TNNLS.2013.2292894.
  129. A proactive intelligent decision support system for predicting the popularity of online news. In Progress in Artificial Intelligence: Proceedings of the 17th Portuguese Conference on Artificial Intelligence (EPIA ’15) (2015), vol. 9273 of LNCS, Springer International Publishing, pp. 535–546. doi:10.1007/978-3-319-23485-4_53.
  130. Explaining explanations: An overview of interpretability of machine learning. In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (2018), DSAA ’18, IEEE, pp. 80–89. doi:10.1109/DSAA.2018.00018.
  131. Greene D., Cunningham P.: Producing accurate interpretable clusters from high-dimensional data. In Knowledge Discovery in Databases: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD ’05) (2005), vol. 3721 of LNCS, Springer Berlin Heidelberg, pp. 486–494. doi:10.1007/11564126_49.
  132. SCface — Surveillance Cameras Face Database. Multimedia Tools Applications 51, 3 (Feb. 2011), 863–879. doi:10.1007/s11042-009-0417-2.
  133. Visualizing uncertainty and alternatives in event sequence predictions. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (2019), CHI ’19, ACM, pp. 573:1–573:12. doi:10.1145/3290605.3300803.
  134. Towards human-guided machine learning. In Proceedings of the 24th International Conference on Intelligent User Interfaces (2019), IUI ’19, ACM, pp. 614–624. doi:10.1145/3301275.3302324.
  135. Caltech-256 Object Category Dataset, 2007. URL: https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001.
  136. Topological fisheye views for visualizing large graphs. IEEE Transactions on Visualization and Computer Graphics 11, 4 (July 2005), 457–468. doi:10.1109/TVCG.2005.66.
  137. Gleicher M.: Explainers: Expert explorations with crafted projections. IEEE Transactions on Visualization and Computer Graphics 19, 12 (Dec. 2013), 2042–2051. doi:10.1109/TVCG.2013.157.
  138. Gabrilovich E., Markovitch S.: Text categorization with many redundant features: Using aggressive feature selection to make SVMs competitive with C4.5. In Proceedings of the 21st International Conference on Machine Learning (2004), ICML ’04, ACM. doi:10.1145/1015330.1015388.
  139. Making machine learning robust against adversarial inputs. Communications of the ACM 61, 7 (June 2018), 56–66. doi:10.1145/3134599.
  140. Model-driven visual analytics. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2008), VAST ’08, IEEE, pp. 19–26. doi:10.1109/VAST.2008.4677352.
  141. Google Cloud Explainable AI, 2020. Accessed January 10, 2020. URL: https://cloud.google.com/explainable-ai/.
  142. A visual analytics approach to model learning. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2010), VAST ’10, IEEE, pp. 67–74. doi:10.1109/VAST.2010.5652484.
  143. A taxonomy and library for visualizing learned features in convolutional neural networks. In Proceedings of the ICML Workshop on Visualization for Deep Learning (2016), DL ’16. arXiv:1606.07757.
  144. Griffiths T. L., Steyvers M.: Finding scientific topics. Proceedings of the National Academy of Sciences 101, suppl 1 (2004), 5228–5235. doi:10.1073/pnas.0307752101.
  145. Gotz D., Sun J.: Visualizing accuracy to improve predictive model performance. Proceedings of the IEEE VIS Workshop on Visualization for Predictive Analytics (2014). URL: http://predictive-workshop.github.io/.
  146. Adaptive contextualization: Combating bias during high-dimensional visualization and data selection. In Proceedings of the 21st International Conference on Intelligent User Interfaces (2016), IUI ’16, ACM, pp. 85–95. doi:10.1145/2856767.2856779.
  147. Visual interaction with deep learning models through collaborative semantic inference. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 884–894. doi:10.1109/TVCG.2019.2934595.
  148. Uncertainty-aware principal component analysis. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 822–831. doi:10.1109/TVCG.2019.2934812.
  149. A task-and-technique centered survey on visual analytics for deep learning model engineering. Computers & Graphics 77 (2018), 30–49. doi:10.1016/j.cag.2018.09.018.
  150. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Movement Disorders 23, 15 (Nov. 2008), 2129–2170. doi:10.1002/mds.22340.
  151. Hoff K. A., Bashir M.: Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors 57, 3 (May 2015), 407–434. doi:10.1177/0018720814547570.
  152. Visual ensemble analysis to study the influence of hyper-parameters on training deep neural networks. In Proceedings of the EuroVis Workshop on Machine Learning Methods in Visualisation for Big Data (2019), MLVis ’19, The Eurographics Association. doi:10.2312/mlvis.20191160.
  153. Self-organizing feature maps identify proteins critical to learning in a mouse model of Down syndrome. PLOS ONE 10, 6 (June 2015). doi:10.1371/journal.pone.0129126.
  154. Gamut: A design probe to understand how data scientists understand machine learning models. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (2019), CHI ’19, ACM, pp. 579:1–579:13. doi:10.1145/3290605.3300809.
  155. Hickey W.: A statistical analysis of the work of Bob Ross, 2014. Accessed January 10, 2020. URL: https://fivethirtyeight.com/features/a-statistical-analysis-of-the-work-of-bob-ross/.
  156. Trust in automation. IEEE Intelligent Systems 28, 1 (Jan.–Feb. 2013), 84–88. doi:10.1109/MIS.2013.24.
  157. Visual analytics in deep learning: An interrogative survey for the next frontiers. IEEE Transactions on Visualization and Computer Graphics 25, 8 (Aug. 2019), 2674–2693. doi:10.1109/TVCG.2018.2843369.
  158. NNVA: Neural network assisted visual analysis of yeast cell polarization simulation. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 34–44. doi:10.1109/TVCG.2019.2934591.
  159. Inter-active learning of ad-hoc classifiers for video visual analytics. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2012), VAST ’12, IEEE, pp. 23–32. doi:10.1109/VAST.2012.6400492.
  160. Howard A.: Investigations into the human-AI trust phenomenon. Plenary invited talk at NeurIPS ’18, Dec. 2018.
  161. Summit: Scaling deep learning interpretability by visualizing activation and attribution summarizations. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 1096–1106. doi:10.1109/TVCG.2019.2934659.
  162. Harrison D., Rubinfeld D. L.: Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management 5, 1 (Mar. 1978), 81–102. doi:10.1016/0095-0696(78)90006-2.
  163. SimLex-999: Evaluating semantic models with (genuine) similarity estimation. Computational Linguistics 41, 4 (Dec. 2015), 665–695. doi:10.1162/COLI_a_00237.
  164. TeleGam: Combining visualization and verbalization for interpretable machine learning. In 2019 IEEE Visualization Conference (VIS) (Oct 2019), pp. 151–155. doi:10.1109/VISUAL.2019.8933695.
  165. Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: II. Parametric study. Combustion and Flame 145, 1–2 (Apr. 2006), 145–159. doi:10.1016/j.combustflame.2005.09.018.
  166. Huuskonen J.: Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. Journal of Chemical Information and Computer Sciences 40, 3 (May 2000), 773–777. doi:10.1021/ci9901338.
  167. Henderson H. V., Velleman P. F.: Building multiple regression models interactively. Biometrics 37, 2 (June 1981), 391–411. doi:10.2307/2530428.
  168. Focus+context exploration of hierarchical embeddings. Computer Graphics Forum 38, 3 (June 2019), 569–579. doi:10.1111/cgf.13711.
  169. Hyperspectral remote sensing scenes, 2019. Accessed January 10, 2020. URL: http://ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
  170. i-Lids multicamera tracking — UK government, 2019. Accessed January 10, 2020. URL: http://homeoffice.gov.uk/science-research/hosdb/i-lids/.
  171. ImageCLEF — The CLEF cross language image retrieval track, 2019. Accessed January 10, 2020. URL: https://imageclef.org/.
  172. DimStiller: Workflows for dimensional analysis and reduction. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2010), VAST ’10, IEEE, pp. 3–10. doi:10.1109/VAST.2010.5652392.
  173. Accessed January 10, 2020. URL: https://cc.gatech.edu/gvu/ii/jigsaw/datafiles.html.
  174. Jassby A. D., Cloern J. E.: WQ: Exploring water quality monitoring data, 2017. Accessed January 10, 2020. URL: https://cran.rstudio.com/web/packages/wql/.
  175. Jiang B., Canny J.: Interactive machine learning via a GPU-accelerated toolkit. In Proceedings of the 22nd International Conference on Intelligent User Interfaces (2017), IUI ’17, ACM, pp. 535–546. doi:10.1145/3025171.3025172.
  176. Pattern Trails: Visual analysis of pattern transitions in subspaces. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2017), VAST ’17, IEEE, pp. 1–12. doi:10.1109/VAST.2017.8585613.
  177. Johansson S., Johansson J.: Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Transactions on Visualization and Computer Graphics 15, 6 (Nov. 2009), 993–1000. doi:10.1109/TVCG.2009.153.
  178. Relative N-gram signatures: Document visualization at the level of character N-grams. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2012), VAST ’12, IEEE, pp. 103–112. doi:10.1109/VAST.2012.6400484.
  179. Uncovering representative groups in multidimensional projections. Computer Graphics Forum 34, 3 (June 2015), 281–290. doi:10.1111/cgf.12640.
  180. Quick, Draw! by Google Creative Lab, 2016. Accessed January 10, 2020. URL: https://experiments.withgoogle.com/quick-draw.
  181. Interpreting black-box semantic segmentation models in remote sensing applications. In Proceedings of the EuroVis Workshop on Machine Learning Methods in Visualisation for Big Data (2019), MLVis ’19, The Eurographics Association. doi:10.2312/mlvis.20191158.
  182. Visual exploration of neural document embedding in information retrieval: Semantics and feature selection. IEEE Transactions on Visualization and Computer Graphics 25, 6 (June 2019), 2181–2192. doi:10.1109/TVCG.2019.2903946.
  183. Minions, sheep, and fruits: Metaphorical narratives to explain artificial intelligence and build trust. In Proceedings of the IEEE VIS Workshop on Visualization for AI Explainability (2018), VISxAI ’18. URL: https://visxai.io/.
  184. iPCA: An interactive system for PCA-based visual analytics. Computer Graphics Forum 28, 3 (June 2009), 767–774. doi:10.1111/j.1467-8659.2009.01475.x.
  185. ActiVis: Visual exploration of industry-scale deep neural network models. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 88–97. doi:10.1109/TVCG.2017.2744718.
  186. Experiments in automatic learning of medical diagnostic rules. In Proceedings of the International School for the Synthesis of Expert Knowledge Workshop (1984).
  187. Principles of explanatory debugging to personalize interactive machine learning. In Proceedings of the 20th International Conference on Intelligent User Interfaces (2015), IUI ’15, ACM, pp. 126–137. doi:10.1145/2678025.2701399.
  188. Kahng M., Chau D. H.: How does visualization help people learn deep learning? Evaluation of GAN Lab. In Proceedings of IEEE VIS Workshop on Evaluation of Interactive Visual Machine Learning Systems (2019), EVIVA-ML ’19. URL: https://eviva-ml.github.io/.
  189. Comparison techniques utilized in spatial 3D and 4D data visualizations: A survey and future directions. Computers & Graphics 67 (2017), 138–147. doi:10.1016/j.cag.2017.05.005.
  190. RetainVis: Visual analytics with interpretable and interactive recurrent neural networks on electronic medical records. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 299–309. doi:10.1109/TVCG.2018.2865027.
  191. SeekAView: An intelligent dimensionality reduction strategy for navigating high-dimensional data spaces. In Proceedings of the IEEE Symposium on Large Data Analysis and Visualization (2016), LDAV ’16, IEEE, pp. 11–19. doi:10.1109/LDAV.2016.7874305.
  192. A workflow for visual diagnostics of binary classifiers using instance-level explanations. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2017), VAST ’17, IEEE, pp. 162–172. doi:10.1109/VAST.2017.8585720.
  193. Clustervision: Visual supervision of unsupervised clustering. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 142–151. doi:10.1109/TVCG.2017.2745085.
  194. Visual exploration of machine learning results using data cube analysis. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics (2016), HILDA ’16, ACM, pp. 1:1–1:6. doi:10.1145/2939502.2939503.
  195. Research directions in data wrangling: Visualizations and transformations for usable and credible data. Information Visualization 10, 4 (Oct. 2011), 271–288. doi:10.1177/1473871611415994.
  196. Mapping and visualizing deep-learning urban beautification. IEEE Computer Graphics and Applications 38, 5 (Sept. 2018), 70–83. doi:10.1109/MCG.2018.053491732.
  197. Kucher K., Kerren A.: Text visualization browser: A visual survey of text visualization techniques. In Poster Abstracts of IEEE VIS (2014).
  198. Kucher K., Kerren A.: Text visualization techniques: Taxonomy, visual survey, and community insights. In Proceedings of the 8th IEEE Pacific Visualization Symposium (2015), PacificVis ’15, IEEE, pp. 117–121. doi:10.1109/PACIFICVIS.2015.7156366.
  199. Towards supporting interpretability of clustering results with uncertainty visualization. In Proceedings of the EuroVis Workshop on Trustworthy Visualization (2019), TrustVis ’19, The Eurographics Association. doi:10.2312/trvis.20191183.
  200. A guide for the utilization of Health Insurance Review and Assessment Service National Patient Samples. Epidemiology and Health 36 (July 2014). doi:10.4178/epih/e2014008.
  201. Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine 17, 1 (2019), 195. doi:10.1186/s12916-019-1426-2.
  202. AxiSketcher: Interactive nonlinear axis mapping of visualizations through user drawings. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 221–230. doi:10.1109/TVCG.2016.2598446.
  203. VASSL: A visual analytics toolkit for social spambot labeling. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 874–883. doi:10.1109/TVCG.2019.2934266.
  204. Interactive optimization for steering machine classification. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2010), CHI ’10, ACM, pp. 1343–1352. doi:10.1145/1753326.1753529.
  205. Analysis of VINCI 2009–2017 proceedings. In Proceedings of the 11th International Symposium on Visual Information Communication and Interaction (2018), VINCI ’18, ACM, pp. 97–101. doi:10.1145/3231622.3231641.
  206. Inherent trade-offs in the fair determination of risk scores. In Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS 2017) (2017), vol. 67 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 43:1–43:23. URL: http://drops.dagstuhl.de/opus/volltexte/2017/8156, doi:10.4230/LIPIcs.ITCS.2017.43.
  207. Kosara R.: An empire built on sand: Reexamining what we think we know about visualization. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization (2016), BELIV ’16, ACM, pp. 162–168. doi:10.1145/2993901.2993909.
  208. INFUSE: Interactive feature selection for predictive modeling of high dimensional data. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 1614–1623. doi:10.1109/TVCG.2014.2346482.
  209. Using visual analytics to interpret predictive machine learning models. In Proceedings of the ICML Workshop on Human Interpretability in Machine Learning (2016), WHI ’16. arXiv:1606.05685.
  210. A user study on the effect of aggregating explanations for interpreting machine learning models. In Proceedings of the KDD Workshop on Interactive Data Exploration and Analytics (2018), IDEA ’18. URL: http://poloclub.gatech.edu/idea2018/.
  211. Using concrete and realistic data in evaluating initial visualization designs. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization (New York, NY, USA, 2016), BELIV ’16, ACM, pp. 27–35. doi:10.1145/2993901.2993917.
  212. The state of the art in sentiment visualization. Computer Graphics Forum 37, 1 (Feb. 2018), 71–96. doi:10.1111/cgf.13217.
  213. Interacting with predictions: Visual inspection of black-box machine learning models. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (2016), CHI ’16, ACM, pp. 5686–5697. doi:10.1145/2858036.2858529.
  214. Active learning and visual analytics for stance classification with ALVA. ACM Transactions on Interactive Intelligent Systems 7, 3 (Oct. 2017), 14:1–14:31. doi:10.1145/3132169.
  215. Krizhevsky A.: Learning Multiple Layers of Features from Tiny Images. Tech. rep., University of Toronto, 2009.
  216. Kienreich W., Seifert C.: Visual exploration of feature-class matrices for classification problems. In Proceedings of the EuroVis Workshop on Visual Analytics (2012), EuroVA ’12, The Eurographics Association. doi:10.2312/PE/EuroVAST/EuroVA12/037-041.
  217. Panning for insight: Amplifying insight through tight integration of machine learning, data mining, and visualization. In Proceedings of the EuroVis Workshop on Machine Learning Methods in Visualisation for Big Data (2018), MLVis ’18, The Eurographics Association. doi:10.2312/mlvis.20181130.
  218. GAN Lab: Understanding complex deep generative models using interactive visual experimentation. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 310–320. doi:10.1109/TVCG.2018.2864500.
  219. Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering 47, 9 (Sept. 2000), 1185–1194. doi:10.1109/10.867928.
  220. Lespinats S., Aupetit M.: CheckViz: Sanity check and topological clues for linear and non-linear mappings. Computer Graphics Forum 30, 1 (Mar. 2011), 113–125. doi:10.1111/j.1467-8659.2010.01835.x.
  221. Lang K.: NewsWeeder: Learning to filter netnews. In Proceedings of the Twelfth International Conference on International Conference on Machine Learning (1995), ICML ’95, Morgan Kaufmann Publishers Inc., pp. 331–339. doi:10.5555/3091622.3091662.
  222. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 11 (Nov. 1998), 2278–2324. doi:10.1109/5.726791.
  223. Visual exploration of semantic relationships in neural word embeddings. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 553–562. doi:10.1109/TVCG.2017.2745141.
  224. DeepTracker: Visualizing the training process of convolutional neural networks. ACM Transactions on Intelligent Systems and Technology 10, 1 (Nov. 2018), 6:1–6:25. doi:10.1145/3200489.
  225. Recent progress and trends in predictive visual analytics. Frontiers of Computer Science 11, 2 (Apr. 2017), 192–207. doi:10.1007/s11704-016-6028-y.
  226. RCLens: Interactive rare category exploration and identification. IEEE Transactions on Visualization and Computer Graphics 24, 7 (July 2018), 2223–2237. doi:10.1109/TVCG.2017.2711030.
  227. The state-of-the-art in predictive visual analytics. Computer Graphics Forum 36, 3 (June 2017), 539–562. doi:10.1111/cgf.13210.
  228. Trust of learning systems: Considerations for code, algorithms, and affordances for learning. In Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent. Springer International Publishing, 2018, pp. 265–278. doi:10.1007/978-3-319-90403-0_13.
  229. Lind N.: Better Life Index. In Encyclopedia of Quality of Life and Well-Being Research. Springer Netherlands, Dordrecht, 2014, pp. 381–382. doi:10.1007/978-94-007-0753-5_3623.
  230. Latent space cartography: Visual analysis of vector space embeddings. Computer Graphics Forum 38, 3 (June 2019), 67–78. doi:10.1111/cgf.13672.
  231. iVisClustering: An interactive visual document clustering via topic modeling. Computer Graphics Forum 31, 3pt3 (June 2012), 1155–1164. doi:10.1111/j.1467-8659.2012.03108.x.
  232. Visualnostics: Visual guidance pictograms for analyzing projections of high-dimensional data. Computer Graphics Forum 34, 3 (June 2015), 291–300. doi:10.1111/cgf.12641.
  233. Lendasse A., Liitiainen E.: Variable scaling for time series prediction: Application to the ESTSP’07 and the NN3 forecasting competitions. In Proceedings of the International Joint Conference on Neural Networks (2007), IJCNN ’07, IEEE, pp. 2812–2816. doi:10.1109/IJCNN.2007.4371405.
  234. Laskov P., Lippmann R.: Machine learning in adversarial environments. Machine Learning 81, 2 (Nov. 2010), 115–119. doi:10.1007/s10994-010-5207-6.
  235. NLIZE: A perturbation-driven visual interrogation tool for analyzing and interpreting natural language inference models. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 651–660. doi:10.1109/TVCG.2018.2865230.
  236. Analyzing the noise robustness of deep neural networks. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2018), VAST ’18, IEEE, pp. 60–71. doi:10.1109/VAST.2018.8802509.
  237. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision (2015), ICCV ’15, IEEE, pp. 3730–3738. doi:10.1109/ICCV.2015.425.
  238. A structure-based distance metric for high-dimensional space exploration with multidimensional scaling. IEEE Transactions on Visualization and Computer Graphics 20, 3 (Mar. 2014), 351–364. doi:10.1109/TVCG.2013.101.
  239. Li X., Roth D.: Learning question classifiers. In Proceedings of the 19th International Conference on Computational Linguistics — Volume 1 (2002), COLING ’02, ACL, pp. 1–7. doi:10.3115/1072228.1072378.
  240. Defining locality for surrogates in post-hoc interpretablity. In Proceedings of the ICML Workshop on Human Interpretability in Machine Learning (2018), WHI ’18. arXiv:1806.07498.
  241. Lee J. D., See K. A.: Trust in automation: Designing for appropriate reliance. Human Factors 46, 1 (Mar. 2004), 50–80. doi:10.1518/hfes.46.1.50_30392.
  242. Analyzing the training processes of deep generative models. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 77–87. doi:10.1109/TVCG.2017.2744938.
  243. Towards better analysis of deep convolutional neural networks. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 91–100. doi:10.1109/TVCG.2016.2598831.
  244. Lowering the barrier for successful replication and evaluation. In Proceedings of the IEEE Workshop on Evaluation and Beyond — Methodological Approaches for Visualization (2018), BELIV ’18, IEEE, pp. 60–68. doi:10.1109/BELIV.2018.8634201.
  245. Distortion-guided structure-driven interactive exploration of high-dimensional data. Computer Graphics Forum 33, 3 (June 2014), 101–110. doi:10.1111/cgf.12366.
  246. Towards better analysis of machine learning models: A visual analytics perspective. Visual Informatics 1, 1 (Mar. 2017), 48–56. doi:10.1016/j.visinf.2017.01.006.
  247. Visual exploration of high-dimensional data through subspace analysis and dynamic projections. Computer Graphics Forum 34, 3 (June 2015), 271–280. doi:10.1111/cgf.12639.
  248. Visual diagnosis of tree boosting methods. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 163–173. doi:10.1109/TVCG.2017.2744378.
  249. Madsen A.: Visualizing memorization in RNNs. Distill (2019). doi:10.23915/distill.00016.
  250. MAWI working group traffic archive, 2019. Accessed January 10, 2020. URL: https://mawi.wide.ad.jp/mawi/.
  251. Marti U.-V., Bunke H.: The IAM-database: An English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 1 (Nov. 2002), 39–46. doi:10.1007/s100320200071.
  252. Guiding feature subset selection with an interactive visualization. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2011), VAST ’11, IEEE, pp. 111–120. doi:10.1109/VAST.2011.6102448.
  253. Reflections on QuestVis: A visualization system for an environmental sustainability model. In Scientific Visualization: Interactions, Features, Metaphors (2011), vol. 2 of Dagstuhl Follow-Ups, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 240–259. URL: http://drops.dagstuhl.de/opus/volltexte/2011/3297, doi:10.4230/DFU.Vol2.SciViz.2011.240.
  254. EasySVM: A visual analysis approach for open-box support vector machines. Computational Visual Media 3, 2 (2017), 161–175. doi:10.1007/s41095-017-0077-5.
  255. Visual analysis of dimensionality reduction quality for parameterized projections. Computers & Graphics 41 (June 2014), 26–42. doi:10.1016/j.cag.2014.01.006.
  256. A data-driven approach to predict the success of bank telemarketing. Decision Support Systems 62 (June 2014), 22–31. doi:10.1016/j.dss.2014.03.001.
  257. Understanding hidden memories of recurrent neural networks. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2017), VAST ’17, IEEE, pp. 13–24. doi:10.1109/VAST.2017.8585721.
  258. An integrative model of organizational trust. Academy of Management Review 20, 3 (July 1995), 709–734. doi:10.5465/amr.1995.9508080335.
  259. Trust in information visualization. In Proceedings of the EuroVis Workshop on Trustworthy Visualization (2019), TrustVis ’19, The Eurographics Association. doi:10.2312/trvis.20191187.
  260. Molchanov V., Linsen L.: Interactive design of multidimensional data projection layout. In Proceedings of the EG/VGTC Conference on Visualization — Short Papers (2014), EuroVis ’14, The Eurographics Association. doi:10.2312/eurovisshort.20141152.
  261. McNabb L., Laramee R. S.: Survey of Surveys (SoS) — Mapping the landscape of survey papers in information visualization. Computer Graphics Forum 36, 3 (June 2017), 589–617. doi:10.1111/cgf.13212.
  262. TreePOD: Sensitivity-aware selection of pareto-optimal decision trees. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 174–183. doi:10.1109/TVCG.2017.2745158.
  263. DeepCompare: Visual and interactive comparison of deep learning model performance. IEEE Computer Graphics and Applications 39, 5 (Sept. 2019), 47–59. doi:10.1109/MCG.2019.2919033.
  264. Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics 19, 2 (June 1993), 313–330. doi:10.5555/972470.972475.
  265. Mühlbacher T., Piringer H.: A partition-based framework for building and validating regression models. IEEE Transactions on Visualization and Computer Graphics 19, 12 (Dec. 2013), 1962–1971. doi:10.1109/TVCG.2013.125.
  266. Opening the black box: Strategies for increased user involvement in existing algorithm implementations. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 1643–1652. doi:10.1109/TVCG.2014.2346578.
  267. RuleMatrix: Visualizing and understanding classifiers with rules. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 342–352. doi:10.1109/TVCG.2018.2864812.
  268. Quantitative structure–activity relationship models for ready biodegradability of chemicals. Journal of Chemical Information and Modeling 53, 4 (Apr. 2013), 867–878. doi:10.1021/ci4000213.
  269. Visual semiotics & uncertainty visualization: An empirical study. IEEE Transactions on Visualization and Computer Graphics 18, 12 (Dec. 2012), 2496–2505. doi:10.1109/TVCG.2012.279.
  270. Interactive molecular networks obtained by computer-aided conversion of microarray data from brains of alcohol-drinking rats. Pharmacopsychiatry 42 (May 2009), S118–S128. doi:10.1055/s-0029-1216348.
  271. A study of the relationships between source code metrics and attractiveness in free software projects. In Proceedings of the Brazilian Symposium on Software Engineering (2010), SBES ’10, IEEE, pp. 11–20. doi:10.1109/SBES.2010.27.
  272. Interactive elicitation of knowledge on feature relevance improves predictions in small data sets. In Proceedings of the 22nd International Conference on Intelligent User Interfaces (2017), IUI ’17, ACM, pp. 547–552. doi:10.1145/3025171.3025181.
  273. Looking at the representations in our mind: Measuring mental models of information visualizations. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization (2016), BELIV ’16, ACM, pp. 96–103. doi:10.1145/2993901.2993914.
  274. Visual classification: Expert knowledge guides machine learning. IEEE Computer Graphics and Applications 30, 1 (Jan. 2010), 8–14. doi:10.1109/MCG.2010.18.
  275. Can semantic labeling methods generalize to any city? The Inria Aerial Image Labeling Benchmark. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (2017), IGARSS ’17, IEEE, pp. 3226–3229. doi:10.1109/IGARSS.2017.8127684.
  276. Munzner T.: A nested model for visualization design and validation. IEEE Transactions on Visualization and Computer Graphics 15, 6 (Nov. 2009), 921–928. doi:10.1109/TVCG.2009.111.
  277. Interactive decision making using dissimilarity to visually represented prototypes. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2011), VAST ’11, IEEE, pp. 141–149. doi:10.1109/VAST.2011.6102451.
  278. Migut M., Worring M.: Visual exploration of classification models for risk assessment. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2010), VAST ’10, IEEE, pp. 11–18. doi:10.1109/VAST.2010.5652398.
  279. ProtoSteer: Steering deep sequence model with prototypes. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 238–248. doi:10.1109/TVCG.2019.2934267.
  280. Explaining vulnerabilities to adversarial machine learning through visual analytics. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 1075–1085. doi:10.1109/TVCG.2019.2934631.
  281. Interpretable and steerable sequence learning via prototypes. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019), KDD ’19, ACM, pp. 903–913. doi:10.1145/3292500.3330908.
  282. Scenario clustering and dynamic probabilistic risk assessment. Reliability Engineering & System Safety 115 (July 2013), 146–160. doi:10.1016/j.ress.2013.02.013.
  283. Linguistic regularities in continuous space word representations. In Proceedings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (2013), NAACL-HLT ’13, ACL, pp. 746–751. URL: https://aclweb.org/anthology/N13-1090.
  284. Nonato L. G., Aupetit M.: Multidimensional projection for visual analytics: Linking techniques with distortions, tasks, and layout enrichment. IEEE Transactions on Visualization and Computer Graphics 25, 8 (Aug. 2019), 2650–2673. doi:10.1109/TVCG.2018.2846735.
  285. New York Times articles, 2017. Accessed January 10, 2020. URL: http://kaggle.com/nzalake52/new-york-times-articles.
  286. Detection of confirmation and distinction biases in visual analytics systems. In Proceedings of the EuroVis Workshop on Trustworthy Visualization (2019), TrustVis ’19, The Eurographics Association. doi:10.2312/trvis.20191185.
  287. Usage of machine learning for strategic decision making at higher educational institutions. IEEE Access 7 (2019), 75007–75017. doi:10.1109/ACCESS.2019.2919343.
  288. ClusterSculptor: A visual analytics tool for high-dimensional data. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2007), VAST ’07, IEEE, pp. 75–82. doi:10.1109/VAST.2007.4388999.
  289. Visualizing deep neural networks for text analytics. In Proceedings of the IEEE Pacific Visualization Symposium (2018), PacificVis ’18, IEEE, pp. 180–189. doi:10.1109/PacificVis.2018.00031.
  290. N. I. P. Systems — NIPS 2017: Adversarial attacks and defences, 2017. Accessed January 10, 2020. URL: https://nips.cc/Conferences/2017/CompetitionTrack.
  291. Nam J. E., Mueller K.: TripAdvisorN−D𝑁𝐷{}^{N-D}start_FLOATSUPERSCRIPT italic_N - italic_D end_FLOATSUPERSCRIPT: A tourism-inspired high-dimensional space exploration framework with overview and detail. IEEE Transactions on Visualization and Computer Graphics 19, 2 (Feb. 2013), 291–305. doi:10.1109/TVCG.2012.65.
  292. Columbia University Image Library (COIL-20). Tech. Rep. CUCS-005-96, Columbia University, Feb. 1996. URL: http://cs.columbia.edu/CAVE/software/softlib/coil-20.php.
  293. NUMBEO — Quality of life, 2015. Accessed January 10, 2020. URL: https://numbeo.com/quality-of-life/.
  294. Norman M., Whalen D.: IEEE Visualization 2008 Contest data, 2008. Accessed January 10, 2020. URL: http://sciviscontest.ieeevis.org/2008/.
  295. Nilsback M.-E., Zisserman A.: A visual vocabulary for flower classification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006), vol. 2 of CVPR ’06, IEEE, pp. 1447–1454. doi:10.1109/CVPR.2006.42.
  296. A framework for provenance analysis and visualization. Procedia Computer Science 108 (2017), 1592–1601. doi:10.1016/j.procs.2017.05.216.
  297. Analysis of KDD ’99 Intrusion Detection Dataset for selection of relevance features. In Proceedings of the World Congress on Engineering and Computer Science (2010), WCECS ’10, International Association of Engineers, pp. 162–168. URL: http://iaeng.org/publication/WCECS2010/.
  298. OpenML — arsenic-female-bladder data set, 2014. Accessed January 10, 2020. URL: https://openml.org/d/949.
  299. Open Directory Project — Webpages and categories, 2019. Accessed January 10, 2020. URL: https://dmoz-odp.org/.
  300. The building blocks of interpretability. Distill (2018). doi:10.23915/distill.00010.
  301. Otto Group Product Classification Challenge, 2014. Accessed January 10, 2020. URL: https://kaggle.com/c/otto-group-product-classification-challenge.
  302. Over P., Yen J.: An introduction to DUC-2003: Intrinsic evaluation of generic news text summarization systems. In Proceedings of the HLT 2003 Workshop on Text Summarization (2003), DUC ’03, NIST. URL: https://duc.nist.gov/pubs.html#2003.
  303. HyperMoVal: Interactive visual validation of regression models for real-time simulation. Computer Graphics Forum 29, 3 (June 2010), 983–992. doi:10.1111/j.1467-8659.2009.01684.x.
  304. Calibrating probability with undersampling for unbalanced classification. In Proceedings of the IEEE Symposium Series on Computational Intelligence (2015), SSCI ’15, IEEE, pp. 159–166. doi:10.1109/SSCI.2015.33.
  305. Hierarchical stochastic neighbor embedding. Computer Graphics Forum 35, 3 (June 2016), 21–30. doi:10.1111/cgf.12878.
  306. DeepEyes: Progressive visual analytics for designing deep neural networks. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 98–108. doi:10.1109/TVCG.2017.2744358.
  307. Pang B., Lee L.: Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (2005), ACL ’05, ACL, pp. 115–124. doi:10.3115/1219840.1219855.
  308. Pang B., Lee L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2, 1–2 (Jan. 2008), 1–135. doi:10.1561/1500000011.
  309. ComDia+: An interactive visual analytics system for comparing, diagnosing, and improving multiclass classifiers. In Proceedings of the IEEE Pacific Visualization Symposium (2019), PacificVis ’19, IEEE, pp. 313–317. doi:10.1109/PacificVis.2019.00044.
  310. Approximated and user steerable tSNE for progressive visual analytics. IEEE Transactions on Visualization and Computer Graphics 23, 7 (July 2017), 1739–1752. doi:10.1109/TVCG.2016.2570755.
  311. Least Square Projection: A fast high-precision multidimensional projection technique and its application to document mapping. IEEE Transactions on Visualization and Computer Graphics 14, 3 (May 2008), 564–575. doi:10.1109/TVCG.2007.70443.
  312. Parkinson’s disease — Parkinsons Progression Markers Initiative (PPMI), 2014. Accessed January 10, 2020. URL: http://www.ppmi-info.org/.
  313. Negative relevance feedback for exploratory search with visual interactive intent modeling. In Proceedings of the 22nd International Conference on Intelligent User Interfaces (2017), IUI ’17, ACM, pp. 149–159. doi:10.1145/3025171.3025222.
  314. Interactive exploration of parameter space in data mining: Comprehending the predictive quality of large decision tree collections. Computers & Graphics 41 (June 2014), 99–113. doi:10.1016/j.cag.2014.02.004.
  315. Semi-supervised dimensionality reduction based on Partial Least Squares for visual analysis of high dimensional data. Computer Graphics Forum 31, 3pt4 (June 2012), 1345–1354. doi:10.1111/j.1467-8659.2012.03126.x.
  316. Phillips-Wren G., Jain L.: Artificial intelligence for decision making. In Knowledge-Based Intelligent Information and Engineering Systems (KES ’06) (2006), vol. 4251 of LNCS, Springer Berlin Heidelberg, pp. 531–536. doi:10.1007/11893004_69.
  317. Qu Z., Hullman J.: Evaluating visualization sets: Trade-offs between local effectiveness and global consistency. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization (2016), BELIV ’16, ACM, pp. 44–52. doi:10.1145/2993901.2993910.
  318. Squares: Supporting interactive performance analysis for multiclass classifiers. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 61–70. doi:10.1109/TVCG.2016.2598828.
  319. Redmond M., Baveja A.: A data-driven software tool for enabling cooperative information sharing among police departments. European Journal of Operational Research 141, 3 (Sept. 2002), 660–678. doi:10.1016/S0377-2217(01)00264-8.
  320. Characterizing provenance in visualization and data analysis: An organizational framework of provenance types and purposes. IEEE Transactions on Visualization and Computer Graphics 22, 1 (Jan. 2016), 31–40. doi:10.1109/TVCG.2015.2467551.
  321. Revow M.: Ringnorm Dataset, 1996. Accessed January 10, 2020. URL: http://www.cs.toronto.edu/~delve/data/ringnorm/desc.html.
  322. Visualizing the hidden activity of artificial neural networks. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 101–110. doi:10.1109/TVCG.2016.2598838.
  323. Projections as visual aids for classification system design. Information Visualization 17, 4 (Oct. 2018), 282–305. doi:10.1177/1473871617713337.
  324. Roesch I., Günther T.: Visualization of neural network predictions for weather forecasting. Computer Graphics Forum 38, 1 (Feb. 2019), 209–220. doi:10.1111/cgf.13453.
  325. Rieck B., Leitte H.: Enhancing comparative model analysis using persistent homology. In Proceedings of the IEEE VIS Workshop on Visualization for Predictive Analytics (2014), VPA ’14. URL: http://predictive-workshop.github.io/.
  326. Rieck B., Leitte H.: Comparing dimensionality reduction methods using data descriptor landscapes. In Proceedings of the Symposium on Visualization in Data Science at IEEE VIS (2015), VDS ’15. URL: http://visualdatascience.org/2015/.
  327. Rieck B., Leitte H.: Persistent homology for the evaluation of dimensionality reduction schemes. Computer Graphics Forum 34, 3 (June 2015), 431–440. doi:10.1111/cgf.12655.
  328. Rieck B., Leitte H.: Exploring and comparing clusterings of multivariate data sets using persistent homology. Computer Graphics Forum 35, 3 (June 2016), 81–90. doi:10.1111/cgf.12884.
  329. Řehůřek R., Sojka P.: Software framework for topic modelling with large corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (2010), ELRA, pp. 45–50. URL: http://lrec-conf.org/proceedings/lrec2010/workshops/W10.pdf.
  330. Interactive image feature selection aided by dimensionality reduction. In Proceedings of the EuroVis Workshop on Visual Analytics (2015), EuroVA ’15, The Eurographics Association. doi:10.2312/eurova.20151098.
  331. Model-agnostic interpretability of machine learning. In Proceedings of the ICML Workshop on Human Interpretability in Machine Learning (2016), WHI ’16. arXiv:1606.05386.
  332. “Why should i trust you?”: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), KDD ’16, ACM, pp. 1135–1144. doi:10.1145/2939672.2939778.
  333. The Reuters Corpus volume 1 — From yesterday’s news to tomorrow’s language resources. In Proceedings of the Third International Conference on Language Resources and Evaluation (2002), LREC ’02, ELRA. URL: http://lrec-conf.org/proceedings/lrec2002/pdf/80.pdf.
  334. Rudin C., Ustun B.: Optimized scoring systems: Toward trust in machine learning for healthcare and criminal justice. INFORMS Journal on Applied Analytics 48, 5 (Sept. 2018), 449–466. doi:10.1287/inte.2018.0957.
  335. Visualizations of deep neural networks in computer vision: A survey. In Transparent Data Mining for Big and Small Data, vol. 32 of Studies in Big Data. Springer International Publishing, 2017, pp. 123–144. doi:10.1007/978-3-319-54024-5_6.
  336. Going beyond visualization: Verbalization as complementary medium to explain machine learning models. In Proceedings of the IEEE VIS Workshop on Visualization for AI Explainability (2018), VISxAI ’18. URL: https://visxai.io/.
  337. Dimensionality Reduction in the Wild: Gaps and Guidance. Tech. rep., Department of Computer Science, University of British Columbia, 2012. URL: http://www.cs.ubc.ca/cgi-bin/tr/2012/TR-2012-03.
  338. Visualizing RNN states with predictive semantic encodings. In Proceedings of IEEE VIS 2019 — Short Papers (2019), VIS ’19, IEEE, pp. 156–160. doi:10.1109/VISUAL.2019.8933744.
  339. Visual cluster analysis of trajectory data with interactive Kohonen maps. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2008), VAST ’08, IEEE, pp. 3–10. doi:10.1109/VAST.2008.4677350.
  340. Schulz H.-J.: TreeVis.net: A tree visualization reference. IEEE Computer Graphics and Applications 31, 6 (Nov. 2011), 11–15. URL: http://treevis.net, doi:10.1109/MCG.2011.103.
  341. Scotch Whisky Dataset, 2017. Accessed January 10, 2020. URL: https://kaggle.com/koki25ando/scotch-whisky-dataset.
  342. Probing projections: Interaction techniques for interpreting arrangements and errors of dimensionality reductions. IEEE Transactions on Visualization and Computer Graphics 22, 1 (Jan. 2016), 629–638. doi:10.1109/TVCG.2015.2467717.
  343. Solar Dynamics Observatory (SDO), 2019. Accessed January 10, 2020. URL: https://sdo.gsfc.nasa.gov/.
  344. Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. Proceedings of the Annual Symposium on Computer Application in Medical Care (Nov. 1988), 261–265. URL: https://ncbi.nlm.nih.gov/pmc/articles/PMC2245318/.
  345. Seq2seq-Vis: A visual debugging tool for sequence-to-sequence models. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 353–363. doi:10.1109/TVCG.2018.2865044.
  346. LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent neural networks. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 667–676. doi:10.1109/TVCG.2017.2744158.
  347. Sidey-Gibbons J. A. M., Sidey-Gibbons C. J.: Machine learning in medicine: A practical introduction. BMC Medical Research Methodology 19, 1 (2019), 64.
  348. Shneiderman B.: Designing trust into online experiences. Communications of the ACM 43, 12 (Dec. 2000), 57–59. doi:10.1145/355112.355124.
  349. Shneiderman B.: Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human-Computer Interaction 36, 6 (2020), 495–504. doi:10.1080/10447318.2020.1741118.
  350. Simonoff J. S.: Smoothing Methods in Statistics. Springer Series in Statistics. Springer-Verlag New York, New York, NY, USA, 2012. doi:10.1007/978-1-4612-4026-6.
  351. Visual integration of data and model space in ensemble learning. In Proceedings of the Symposium on Visualization in Data Science at IEEE VIS (2017), VDS ’17, IEEE, pp. 15–22. doi:10.1109/VDS.2017.8573444.
  352. Integrating data and model space in ensemble learning by visual analytics. IEEE Transactions on Big Data (2018). doi:10.1109/TBDATA.2018.2877350.
  353. SOMFlow: Guided exploratory cluster analysis with self-organizing maps and analytic provenance. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 120–130. doi:10.1109/TVCG.2017.2744805.
  354. Closing the loop: User-centered design and evaluation of a human-in-the-loop topic modeling system. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (2018), IUI ’18, ACM, pp. 293–304. doi:10.1145/3172944.3172965.
  355. Artificial intelligence and machine learning in clinical development: A translational perspective. npj Digital Medicine 2, 1 (2019), 69. doi:10.1038/s41746-019-0148-3.
  356. VIS4ML: An ontology for visual analytics assisted machine learning. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 385–395. doi:10.1109/TVCG.2018.2864838.
  357. Label-and-learn: Visualizing the likelihood of machine learning classifier’s success during data labeling. In Proceedings of the 22nd International Conference on Intelligent User Interfaces (2017), IUI ’17, ACM, pp. 523–534. doi:10.1145/3025171.3025208.
  358. Interactive regression lens for exploring scatter plots. Computer Graphics Forum 36, 3 (June 2017), 157–166. doi:10.1111/cgf.13176.
  359. Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum 28, 3 (June 2009), 831–838. doi:10.1111/j.1467-8659.2009.01467.x.
  360. Interactive document clustering revisited: A visual analytics approach. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (2018), IUI ’18, ACM, pp. 281–292. doi:10.1145/3172944.3172964.
  361. Snyder H.: Literature review as a research methodology: An overview and guidelines. Journal of Business Research 104 (2019), 333–339. doi:10.1016/j.jbusres.2019.07.039.
  362. ReLVis: Visual analytics for situational awareness during reinforcement learning experimentation. In Proceedings of the EG/VGTC Conference on Visualization — Short Papers (2019), EuroVis ’19, The Eurographics Association. doi:10.2312/evs.20191168.
  363. Progressive visual analytics: User-driven visual exploration of in-progress analytics. IEEE Transactions on Visualization and Computer Graphics 20, 12 (Dec. 2014), 1653–1662. doi:10.1109/TVCG.2014.2346574.
  364. Spiegelhalter D.: Making algorithms trustworthy: What can statistical science contribute to transparency, explanation and validation? Plenary invited talk at NeurIPS ’18, Dec. 2018.
  365. Spooky Author Identification, 2017. Accessed January 10, 2020. URL: https://kaggle.com/bistaumanga/usps-dataset.
  366. Visual predictive analytics using iFuseML. In Proceedings of the EuroVis Workshop on Visual Analytics (2018), EuroVA ’18, The Eurographics Association. doi:10.2312/eurova.20181106.
  367. Attribute-based visual explanation of multidimensional projections. In Proceedings of the EuroVis Workshop on Visual Analytics (2015), EuroVA ’15, The Eurographics Association. doi:10.2312/eurova.20151100.
  368. Stress Maps: Analysing local phenomena in dimensionality reduction based visualisations. In Proceedings of the International Symposium on Visual Analytics Science and Technology (2010), EuroVAST ’10, The Eurographics Association. doi:10.2312/PE/EuroVAST/EuroVAST10/013-018.
  369. The role of uncertainty, awareness, and trust in visual analytics. IEEE Transactions on Visualization and Computer Graphics 22, 1 (Jan. 2016), 240–249. doi:10.1109/TVCG.2015.2467591.
  370. Visualization-assisted development of deep learning models in offline handwriting recognition. In Proceedings of the Symposium on Visualization in Data Science at IEEE VIS (2018), VDS ’18. URL: http://visualdatascience.org/2018/.
  371. explAIner: A visual analytics framework for interactive and explainable machine learning. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 1064–1074. doi:10.1109/TVCG.2019.2934629.
  372. Human-centered machine learning through interactive visualization: Review and open challenges. In Proceedings of the 24th European Symposium on Artificial Neural Networks (2016), ESANN 2016, Ciaco - i6doc.com, pp. 641–646. URL: https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-166.pdf.
  373. What you see is what you can change: Human-centered machine learning by interactive visualization. Neurocomputing 268 (2017), 164–175. doi:10.1016/j.neucom.2017.01.105.
  374. Techniques for precision-based visual analysis of projected data. Information Visualization 9, 3 (Sept. 2010), 181–193. doi:10.1057/ivs.2010.2.
  375. Strezoski G., Worring M.: Plug-and-play interactive deep network visualization. In Proceedings of the Workshop on Visual Analytics for Deep Learning (2017), VADL ’17. URL: https://vadl2017.github.io/.
  376. Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. ITU Journal: ICT Discoveries 1, 1 (Mar. 2018), 39–48. URL: https://www.itu.int/en/journal/001/Pages/05.aspx.
  377. Computational inference of neural information flow networks. PLOS Computational Biology 2, 11 (Nov. 2006). doi:10.1371/journal.pcbi.0020161.
  378. The National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and mortality from air pollution in the United States. Health Effects Institute Research Report, 94 part II (June 2000), 5–70. URL: https://healtheffects.org/publication/national-morbidity-mortality-and-air-pollution-study-part-ii-morbidity-and-mortality-air.
  379. Detection of successful and unsuccessful pregnancies in mice within hours of pairing through frequency analysis of high temporal resolution core body temperature data. PLOS ONE 11, 7 (July 2016). doi:10.1371/journal.pone.0160127.
  380. FraudVis: Understanding unsupervised fraud detection algorithms. In Proceedings of the IEEE Pacific Visualization Symposium (2018), PacificVis ’18, IEEE, pp. 170–174. doi:10.1109/PacificVis.2018.00029.
  381. Visual interaction with dimensionality reduction: A structured literature analysis. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 241–250. doi:10.1109/TVCG.2016.2598495.
  382. Tominski C., Aigner W.: The TimeVis Browser, 2013. Accessed January 10, 2020. URL: http://survey.timeviz.net.
  383. The relationship between trust in AI and trustworthy machine learning technologies. In Proceedings of the Conference on Fairness, Accountability, and Transparency (2020), FAT* ’20, ACM, pp. 272–283. doi:10.1145/3351095.3372834.
  384. Taylor R.: Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography 6, 1 (Jan. 1990), 35–39. doi:10.1177/875647939000600106.
  385. ICE: An interactive configuration explorer for high dimensional categorical parameter spaces. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2019), VAST ’19, IEEE. arXiv:1907.12627.
  386. Titanic: Machine learning from disaster, 2015. Accessed January 10, 2020. URL: https://kaggle.com/c/titanic.
  387. Interpreting black-box classifiers using instance-level visual explanations. In Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics (2017), HILDA ’17, ACM, pp. 6:1–6:6. doi:10.1145/3077257.3077260.
  388. Comparison of machine learning algorithm’s performance based on decision making in autonomous car. In Proceedings of the International Joint Symposium on Artificial Intelligence and Natural Language Processing (2018), iSAI-NLP ’18, IEEE. doi:10.1109/iSAI-NLP.2018.8693002.
  389. EnsembleMatrix: Interactive visualization to support machine learning with multiple classifiers. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2009), CHI ’09, ACM, pp. 1283–1292. doi:10.1145/1518701.1518895.
  390. Exploring high-dimensional structure via axis-aligned decomposition of linear projections. Computer Graphics Forum 37, 3 (June 2018), 241–251. doi:10.1111/cgf.13416.
  391. Subspace search and visualization to make sense of alternative clusterings in high-dimensional data. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2012), VAST ’12, IEEE, pp. 63–72. doi:10.1109/VAST.2012.6400488.
  392. Interactive visual analysis of temporal cluster structures. Computer Graphics Forum 30, 3 (June 2011), 711–720. doi:10.1111/j.1467-8659.2011.01920.x.
  393. TransitFeeds — Nashville MTA GTFS, 2019. Accessed January 10, 2020. URL: https://transitfeeds.com/p/nashville-mta/220.
  394. A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500 (Dec. 2000), 2319–2323. doi:10.1126/science.290.5500.2319.
  395. Enhancing a social science model-building workflow with interactive visualisation. In Proceedings of the 24th European Symposium on Artificial Neural Networks (2016), ESANN 2016, Ciaco - i6doc.com, pp. 629–634. URL: http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2016-147.pdf.
  396. Estimation of aqueous solubility of chemical compounds using E-state indices. Journal of Chemical Information and Computer Sciences 41, 6 (Nov. 2001), 1488–1493. doi:10.1021/ci000392t.
  397. Tron R., Vidal R.: A benchmark for the comparison of 3-D motion segmentation algorithms. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007), CVPR ’07, IEEE. doi:10.1109/CVPR.2007.382974.
  398. ArnetMiner: Extraction and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2008), KDD ’08, ACM, pp. 990–998. doi:10.1145/1401890.1402008.
  399. USDA National Nutrient Database, 2019. Accessed January 10, 2020. URL: https://fdc.nal.usda.gov/.
  400. Handwritten Digits USPS Dataset, 2017. Accessed January 10, 2020. URL: https://kaggle.com/bistaumanga/usps-dataset.
  401. van der Maaten L., Hinton G.: Visualizing data using t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605. URL: http://jmlr.org/papers/v9/vandermaaten08a.html.
  402. Dimensionality reduction: a comparative review. Journal of Machine Learning Research 10 (2009), 66–71.
  403. van der Putten P., van Someren M.: CoIL Challenge 2000: The Insurance Company Case. Tech. Rep. 2000-09, Leiden Institute of Advanced Computer Science, 2000. URL: http://liacs.leidenuniv.nl/~puttenpwhvander/library/cc2000/.
  404. BayesPiles: Visualisation support for bayesian network structure learning. ACM Transactions on Intelligent Systems and Technology 10, 1 (Nov. 2018), 5:1–5:23. doi:10.1145/3230623.
  405. Van Long T., Linsen L.: MultiClusterTree: Interactive visual exploration of hierarchical clusters in multidimensional multivariate data. Computer Graphics Forum 28, 3 (June 2009), 823–830. doi:10.1111/j.1467-8659.2009.01468.x.
  406. A simple formula for the calculation of sample size in pilot studies. Journal of Clinical Epidemiology 68, 11 (2015), 1375–1379. doi:10.1016/j.jclinepi.2015.04.014.
  407. Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 44, 5 (May 2016), 1227–1239. doi:10.1016/j.immuni.2016.04.014.
  408. van den Elzen S., van Wijk J. J.: BaobabView: Interactive construction and analysis of decision trees. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2011), VAST ’11, IEEE, pp. 151–160. doi:10.1109/VAST.2011.6102453.
  409. Assessment of algorithms for mitosis detection in breast cancer histopathology images. Medical Image Analysis 20, 1 (Feb. 2015), 237–248. doi:10.1016/j.media.2014.11.010.
  410. EasyXplorer: A flexible visual exploration approach for multivariate spatial data. Computer Graphics Forum 34, 7 (Oct. 2015), 163–172. doi:10.1111/cgf.12755.
  411. Towards a systematic combination of dimension reduction and clustering in visual analytics. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 131–141. doi:10.1109/TVCG.2017.2745258.
  412. A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics 6, 1 (June 2010), 34–45. doi:10.1016/j.jcae.2010.04.002.
  413. DQNViz: A visual analytics approach to understand Deep Q-Networks. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 288–298. doi:10.1109/TVCG.2018.2864504.
  414. GANViz: A visual analytics approach to understand the adversarial game. IEEE Transactions on Visualization and Computer Graphics 24, 6 (June 2018), 1905–1917. doi:10.1109/TVCG.2018.2816223.
  415. DeepVID: Deep visual interpretation and diagnosis for image classifiers via knowledge distillation. IEEE Transactions on Visualization and Computer Graphics 25, 6 (June 2019), 2168–2180. doi:10.1109/TVCG.2019.2903943.
  416. World Health Organization (WHO-SIS) Statistical Information System, 2019. Accessed January 10, 2020. URL: http://who.int/whosis/en/.
  417. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Statistical Methods in Medical Research 25, 3 (June 2016), 1057–1073. doi:10.1177/0962280215588241.
  418. Linear discriminative star coordinates for exploring class and cluster separation of high dimensional data. Computer Graphics Forum 36, 3 (June 2017), 401–410. doi:10.1111/cgf.13197.
  419. High-dimensional data analysis with subspace comparison using matrix visualization. Information Visualization 18, 1 (Jan. 2019), 94–109. doi:10.1177/1473871617733996.
  420. Wang B., Mueller K.: The Subspace Voyager: Exploring high-dimensional data along a continuum of salient 3D subspaces. IEEE Transactions on Visualization and Computer Graphics 24, 2 (Feb. 2018), 1204–1222. doi:10.1109/TVCG.2017.2672987.
  421. ATMSeer: Increasing transparency and controllability in automated machine learning. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (2019), CHI ’19, ACM, pp. 681:1–681:12. doi:10.1145/3290605.3300911.
  422. Wohlin C.: Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering (2014), EASE ’14, ACM, pp. 38:1–38:10. doi:10.1145/2601248.2601268.
  423. Wolf C. T.: Explainability scenarios: Towards scenario-based XAI design. In Proceedings of the 24th International Conference on Intelligent User Interfaces (2019), IUI ’19, ACM, pp. 252–257. doi:10.1145/3301275.3302317.
  424. The What-If Tool: Interactive probing of machine learning models. IEEE Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 56–65. doi:10.1109/TVCG.2019.2934619.
  425. Visualizing dataflow graphs of deep learning models in TensorFlow. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 1–12. doi:10.1109/TVCG.2017.2744878.
  426. Reinforcement learning algorithms for solving classification problems. In Proceedings of the IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (2011), ADPRL ’11, IEEE, pp. 91–96. doi:10.1109/ADPRL.2011.5967372.
  427. DimScanner: A relation-based visual exploration approach towards data dimension inspection. In Proceedings of the IEEE Conference on Visual Analytics Science and Technology (2016), VAST ’16, IEEE, pp. 81–90. doi:10.1109/VAST.2016.7883514.
  428. ViDX: Visual diagnostics of assembly line performance in smart factories. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan. 2017), 291–300. doi:10.1109/TVCG.2016.2598664.
  429. Examining the components of trust in map-based visualizations. In Proceedings of the EuroVis Workshop on Trustworthy Visualization (2019), TrustVis ’19, The Eurographics Association. doi:10.2312/trvis.20191186.
  430. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms, 2017. arXiv:1708.07747.
  431. EnsembleLens: Ensemble-based visual exploration of anomaly detection algorithms with multidimensional data. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 109–119. doi:10.1109/TVCG.2018.2864825.
  432. LDSScanner: Exploratory analysis of low-dimensional structures in high-dimensional datasets. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 236–245. doi:10.1109/TVCG.2017.2744098.
  433. Do I trust a machine? Differences in user trust based on system performance. In Human and Machine Learning: Visible, Explainable, Trustworthy and Transparent, HCIS. Springer International Publishing, 2018, pp. 245–264. doi:10.1007/978-3-319-90403-0_12.
  434. Understanding neural networks through deep visualization. In Proceedings of the ICML Workshop on Visualization for Deep Learning (2015), DL ’15. arXiv:1506.06579.
  435. Generalized hierarchical matching for sub-category aware object classification. In Proceedings of the ECCV 2012 PASCAL Visual Object Classes Challenge Workshop (2012), VOC ’12. URL: http://host.robots.ox.ac.uk:8080/pascal/VOC/voc2012/workshop/index.html.
  436. Yeh I.-C.: Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete Research 28, 12 (Dec. 1998), 1797–1808. doi:10.1016/S0008-8846(98)00165-3.
  437. Yelp Open Dataset, 2019. Accessed January 10, 2020. URL: https://yelp.com/dataset/.
  438. Yeh I.-C., Lien C.-h.: The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Systems with Applications 36, 2 (Mar. 2009), 2473–2480. doi:10.1016/j.eswa.2007.12.020.
  439. Analysis guided visual exploration of multivariate data. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (2007), VAST ’07, IEEE, pp. 83–90. doi:10.1109/VAST.2007.4389000.
  440. Yu R., Shi L.: A user-based taxonomy for deep learning visualization. Visual Informatics 2, 3 (Sept. 2018), 147–154. doi:10.1016/j.visinf.2018.09.001.
  441. Homology-preserving dimensionality reduction via manifold landmarking and tearing. In Proceedings of the Symposium on Visualization in Data Science at IEEE VIS (2018), VDS ’18. URL: http://visualdatascience.org/2018/.
  442. Oui! Outlier interpretation on multi-dimensional data via visual analytics. Computer Graphics Forum 38, 3 (June 2019), 213–224. doi:10.1111/cgf.13683.
  443. Zeiler M. D., Fergus R.: Visualizing and understanding convolutional networks. In Proceedings of the 13th European Conference on Computer Vision (ECCV ’14) (2014), vol. 8689 of LNCS, Springer International Publishing, pp. 818–833. doi:10.1007/978-3-319-10590-1_53.
  444. CNNComparator: Comparative analytics of convolutional neural networks. In Proceedings of the Workshop on Visual Analytics for Deep Learning (2017), VADL ’17. URL: https://vadl2017.github.io/.
  445. Zelenyuk A., Imre D.: Single Particle Laser Ablation Time-of-Flight Mass Spectrometer: An introduction to SPLAT. Aerosol Science and Technology 39, 6 (June 2005), 554–568. doi:10.1080/027868291009242.
  446. FeatureExplorer: Interactive feature selection and exploration of regression models for hyperspectral images. In Proceedings of IEEE VIS 2019 — Short Papers (2019), VIS ’19, IEEE, pp. 161–165. doi:10.1109/VISUAL.2019.8933619.
  447. Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data. In Proceedings of the IEEE Pacific Visualization Symposium (2016), PacificVis ’16, IEEE, pp. 128–135. doi:10.1109/PACIFICVIS.2016.7465260.
  448. BiDots: Visual exploration of weighted biclusters. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 195–204. doi:10.1109/TVCG.2017.2744458.
  449. Manifold visualization via short walks. In Proceedings of the EG/VGTC Conference on Visualization — Short Papers (2016), EuroVis ’16, Eurographics Association, pp. 85–89. doi:10.2312/eurovisshort.20161166.
  450. SkyLens: Visual analysis of skyline on multi-dimensional data. IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 246–255. doi:10.1109/TVCG.2017.2744738.
  451. iForest: Interpreting random forests via visual analytics. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 407–416. doi:10.1109/TVCG.2018.2864475.
  452. Manifold: A model-agnostic framework for interpretation and diagnosis of machine learning models. IEEE Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2019), 364–373. doi:10.1109/TVCG.2018.2864499.
  453. LoVis: Local pattern visualization for model refinement. Computer Graphics Forum 33, 3 (June 2014), 331–340. doi:10.1111/cgf.12389.
  454. A visual analytics approach to high-dimensional logistic regression modeling and its application to an environmental health study. In Proceedings of the IEEE Pacific Visualization Symposium (2016), PacificVis ’16, IEEE, pp. 136–143. doi:10.1109/PACIFICVIS.2016.7465261.
  455. Zhang Q.-s., Zhu S.-c.: Visual interpretability for deep learning: A survey. Frontiers of Information Technology & Electronic Engineering 19, 1 (Jan. 2018), 27–39. doi:10.1631/FITEE.1700808.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. A. Chatzimparmpas (1 paper)
  2. R. Martins (9 papers)
  3. I. Jusufi (1 paper)
  4. K. Kucher (1 paper)
  5. Fabrice Rossi (72 papers)
  6. A. Kerren (1 paper)
Citations (143)
X Twitter Logo Streamline Icon: https://streamlinehq.com