Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CHEM: Efficient Secure Aggregation with Cached Homomorphic Encryption in Federated Machine Learning Systems (2212.11475v1)

Published 22 Dec 2022 in cs.CR

Abstract: Although homomorphic encryption can be incorporated into neural network layers for securing machine learning tasks, such as confidential inference over encrypted data samples and encrypted local models in federated learning, the computational overhead has been an Achilles heel. This paper proposes a caching protocol, namely CHEM, such that tensor ciphertexts can be constructed from a pool of cached radixes rather than carrying out expensive encryption operations. From a theoretical perspective, we demonstrate that CHEM is semantically secure and can be parameterized with straightforward analysis under practical assumptions. Experimental results on three popular public data sets show that adopting CHEM only incurs sub-second overhead and yet reduces the encryption cost by 48%--89% for encoding input data samples in confidential inference and 67%--87% for encoding local models in federated learning, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.