Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised Hypergraph Representation Learning for Sociological Analysis (2212.11440v2)

Published 22 Dec 2022 in cs.SI and cs.CY

Abstract: Modern sociology has profoundly uncovered many convincing social criteria for behavioural analysis. Unfortunately, many of them are too subjective to be measured and presented in online social networks. On the other hand, data mining techniques can better find data patterns but many of them leave behind unnatural understanding. In this paper, we propose a fundamental methodology to support the further fusion of data mining techniques and sociological behavioral criteria. Our highlights are three-fold: First, we propose an effective hypergraph awareness and a fast line graph construction framework. The hypergraph can more profoundly indicate the interactions between individuals and their environments because each edge in the hypergraph (a.k.a hyperedge) contains more than two nodes, which is perfect to describe social environments. A line graph treats each social environment as a super node with the underlying influence between different environments. In this way, we go beyond traditional pair-wise relations and explore richer patterns under various sociological criteria; Second, we propose a novel hypergraph-based neural network to learn social influence flowing from users to users, users to environments, environment to users, and environments to environments. The neural network can be learned via a task-free method, making our model very flexible to support various data mining tasks and sociological analysis; Third, we propose both qualitative and quantitive solutions to effectively evaluate the most common sociological criteria like social conformity, social equivalence, environmental evolving and social polarization. Our extensive experiments show that our framework can better support both data mining tasks for online user behaviours and sociological analysis.

Citations (34)

Summary

We haven't generated a summary for this paper yet.