Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hidden Markov modeling approach combining objective measure of activity and subjective measure of self-reported sleep to estimate the sleep-wake cycle (2212.11224v1)

Published 21 Dec 2022 in stat.AP, stat.CO, and stat.ME

Abstract: Characterizing the sleep-wake cycle in adolescents is an important prerequisite to better understand the association of abnormal sleep patterns with subsequent clinical and behavioral outcomes. The aim of this research was to develop hidden Markov models (HMM) that incorporate both objective (actigraphy) and subjective (sleep log) measures to estimate the sleep-wake cycle using data from the NEXT longitudinal study, a large population-based cohort study. The model was estimated with a negative binomial distribution for the activity counts (1-minute epochs) to account for overdispersion relative to a Poisson process. Furthermore, self-reported measures were dichotomized (for each one-minute interval) and subject to misclassification. We assumed that the unobserved sleep-wake cycle follows a two-state Markov chain with transitional probabilities varying according to a circadian rhythm. Maximum-likelihood estimation using a backward-forward algorithm was applied to fit the longitudinal data on a subject by subject basis. The algorithm was used to reconstruct the sleep-wake cycle from sequences of self-reported sleep and activity data. Furthermore, we conduct simulations to examine the properties of this approach under different observational patterns including both complete and partially observed measurements on each individual.

Summary

We haven't generated a summary for this paper yet.