Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Free-Rider Games for Federated Learning with Selfish Clients in NextG Wireless Networks (2212.11194v1)

Published 21 Dec 2022 in cs.GT, cs.AI, cs.LG, cs.NI, cs.SY, and eess.SY

Abstract: This paper presents a game theoretic framework for participation and free-riding in federated learning (FL), and determines the Nash equilibrium strategies when FL is executed over wireless links. To support spectrum sensing for NextG communications, FL is used by clients, namely spectrum sensors with limited training datasets and computation resources, to train a wireless signal classifier while preserving privacy. In FL, a client may be free-riding, i.e., it does not participate in FL model updates, if the computation and transmission cost for FL participation is high, and receives the global model (learned by other clients) without incurring a cost. However, the free-riding behavior may potentially decrease the global accuracy due to lack of contribution to global model learning. This tradeoff leads to a non-cooperative game where each client aims to individually maximize its utility as the difference between the global model accuracy and the cost of FL participation. The Nash equilibrium strategies are derived for free-riding probabilities such that no client can unilaterally increase its utility given the strategies of its opponents remain the same. The free-riding probability increases with the FL participation cost and the number of clients, and a significant optimality gap exists in Nash equilibrium with respect to the joint optimization for all clients. The optimality gap increases with the number of clients and the maximum gap is evaluated as a function of the cost. These results quantify the impact of free-riding on the resilience of FL in NextG networks and indicate operational modes for FL participation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yalin E. Sagduyu (73 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.