Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Elementary Proof of the FMP for Kleene Algebra (2212.10931v3)

Published 21 Dec 2022 in cs.FL and cs.LO

Abstract: Kleene Algebra (KA) is a useful tool for proving that two programs are equivalent. Because KA's equational theory is decidable, it integrates well with interactive theorem provers. This raises the question: which equations can we (not) prove using the laws of KA? Moreover, which models of KA are complete, in the sense that they satisfy exactly the provable equations? Kozen (1994) answered these questions by characterizing KA in terms of its LLM. Concretely, equivalences provable in KA are exactly those that hold for regular expressions. Pratt (1980) observed that KA is complete w.r.t. relational models, i.e., that its provable equations are those that hold for any relational interpretation. A less known result due to Palka (2005) says that finite models are complete for KA, i.e., that provable equivalences coincide with equations satisfied by all finite KAs. Phrased contrapositively, the latter is a finite model property (FMP): any unprovable equation is falsified by a finite KA. Both results can be argued using Kozen's theorem, but the implication is mutual: given that KA is complete w.r.t. finite (resp. relational) models, Palka's (resp. Pratt's) arguments show that it is complete w.r.t. the LLM. We embark on a study of the different complete models of KA, and the connections between them. This yields a novel result subsuming those of Palka and Pratt, namely that KA is complete w.r.t. finite relational models. Next, we put an algebraic spin on Palka's techniques, which yield a new elementary proof of the finite model property, and by extension, of Kozen's and Pratt's theorems. In contrast with earlier approaches, this proof relies not on minimality or bisimilarity of automata, but rather on representing the regular expressions involved in terms of transformation automata.

Summary

We haven't generated a summary for this paper yet.