Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Non-Interactive Source Simulation via Fourier Transform (2212.09239v1)

Published 19 Dec 2022 in cs.IT, cs.CR, cs.SY, eess.SY, math.IT, and math.PR

Abstract: The non-interactive source simulation (NISS) scenario is considered. In this scenario, a pair of distributed agents, Alice and Bob, observe a distributed binary memoryless source $(Xd,Yd)$ generated based on joint distribution $P_{X,Y}$. The agents wish to produce a pair of discrete random variables $(U_d,V_d)$ with joint distribution $P_{U_d,V_d}$, such that $P_{U_d,V_d}$ converges in total variation distance to a target distribution $Q_{U,V}$ as the input blocklength $d$ is taken to be asymptotically large. Inner and outer bounds are obtained on the set of distributions $Q_{U,V}$ which can be produced given an input distribution $P_{X,Y}$. To this end, a bijective mapping from the set of distributions $Q_{U,V}$ to a union of star-convex sets is provided. By leveraging proof techniques from discrete Fourier analysis along with a novel randomized rounding technique, inner and outer bounds are derived for each of these star-convex sets, and by inverting the aforementioned bijective mapping, necessary and sufficient conditions on $Q_{U,V}$ and $P_{X,Y}$ are provided under which $Q_{U,V}$ can be produced from $P_{X,Y}$. The bounds are applicable in NISS scenarios where the output alphabets $\mathcal{U}$ and $\mathcal{V}$ have arbitrary finite size. In case of binary output alphabets, the outer-bound recovers the previously best-known outer-bound.

Citations (1)

Summary

We haven't generated a summary for this paper yet.